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Abstract. Today, the classification of hate speech in 
Arabic tweets has garnered significant attention from 
scholars worldwide. Although numerous classification 
approaches proposed in response to this interest, two 
primary challenges persist are reliance on handcrafted 
features and limited performance rates. This paper 
addresses the task of identifying Arabic hate speech on 
Twitter, aiming to deepen insights into the efficacy of 
novel machine-learning techniques. Specifically, we 
compare the performance of traditional machine 
learning-based approaches with state-of-the-art pre-
trained language models based on Transfer Learning, as 
well as deep learning models. Our experiments, 
conducted on a benchmark dataset using a standard 
evaluation scenario, reveal several key findings. Firstly, 
multidialectal pre-trained language models demonstrate 
superior performance compared to monolingual and 
multilingual variants. Secondly, fine-tuning the pre-
trained large language models significantly enhances 
the accuracy of hate speech classification in Arabic 
tweets. Our primary contribution lies in achieving 
promising results for the corresponding task through the 
application of multidialectal pre-trained language models 
trained on Twitter data. 

Keywords. Arabic hate speech detection, fine-tuning, 
transfer learning, AraBERT. 

1. Introduction 

Nowadays, hate speech has garnered significant 
attention from scholars worldwide. Originally, this 
form of content was shared via conventional 
media outlets. 

However, the global availability of the Internet, 
facilitated by social media like Twitter, YouTube, 
and Facebook, has led to an exponential increase 
in users expressing their opinions and sharing 
posts. Regrettably, these posts can occasionally 
exert adverse psychological impacts on social 
media users, with extreme cases even resulting in 
instances of suicide [2]. The proliferation of 
unregulated text on social media represents a 
concerning phenomenon, particularly when such 
content contains hate speech. The European 
Union has adopted a legislative approach to 
address this issue. 

Specifically, the Commission of the European 
Union has exerted pressure on numerous social 
media platforms to adopt a hate speech code. As 
part of this code, platforms have committed to 
reviewing the 'notifications for elimination of hate 
speech' within a 24-hour and facilitating direct 
notification to law enforcement agencies. 

However, fulfilling this pledge proves 
challenging owing to the missed of clarity regarding 
the precise scope of hate speech, stemming from 
inadequate data collection and systematic 
reporting mechanisms. 

Consequently, platforms often rely on their user 
communities to identify and report instances of 
hateful speech. 

This task poses significant complexity for social 
media platforms. Given the vast volume of data 
shared daily, coupled with the absence of efficient 
automated systems, the community of natural 
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language processing is motivated to undertake 
research into hate speech detection. 

Additionally, there are a significant demand for 
study focused on language than English [3]. 
Today, researchers are leveraging Twitter data to 
propose various approaches for Arabic hate 
speech classification. 

However, two primary challenges persist 
reliance on handcrafted features and limited 
performance rates. Automatic classification of 
Arabic hate speech using conventional learning 
algorithms like Support Vector Machine (SVM), 
and Naïve Bayes (NB) has demonstrated 
acceptable results.  

Nevertheless, they rely on handcrafted features 
derived using pre-defined methods like Term 
Frequency-Inverse Document Frequency (TF-
IDF), Bag of Word (BoW), and Term Frequency 
(TF). Recently, Gated Recurrent Unit (GRU), Long 
Short-Term Memory (LSTM), and Convolution 
Neural Network (CNN) have already shown 
promising results. However, they depend on some 
pre-defined word embedding models like 
AraBERT, Mazajk, and AraVec. 

This paper offers a comparative examination of 
various machine-learning methodologies for the 
classification of Arabic hate speech on Twitter. We 
evaluate the classification models using a 
benchmark dataset that contains tweets annotated 
for hate speech classification. 

The major contributions of this work are briefly 
noted as follows: 

− We evaluate three suggested DL-based 
approaches (Bi-LSTM, LSTM, and CNN) along 
with traditional machine learning models (SVM 
and NB).  

− We compare the accuracy results of the recent 
pre-trained language model utilizing 
transformer mechanisms. Including multi-
lingual ones (XLM and BERT), a mono-lingual 
model (AraBERT), and a multi-dialectal model 
(AraBERT-Twitter). 

− We compare the performance of the 
transformers-based model with our baseline. 

The rest of this manuscript is structured as 
follows. Section 2 presents the related works. In 
Section 3, we discuss the data and methodology. 
In Section 4, we focus on the experiments and 

evaluation results. In Section 5, we discuss our 
main contribution. In Section 6, we conclude 
the paper. 

2. Related Works 

The emergence of the Twitter platform has 
encouraged a multitude of research avenues 
including topic detection [4], organization detection 
[5, 6], and bot detection [6, 7]. Thanks to their 
importance, Arabic hate speech classification has 
garnered significant attention from 
scholars worldwide. 

Numerous methods and systems have been 
suggested to tackle this challenging classification 
task. They follow two major approaches: a 
traditional based approach and a deep learning-
based approach. 

2.1 Traditional Approaches 

In this scenario, conventional classification 
methods depend on feature engineering, wherein 
texts are transformed into feature vectors before 
classification using standard algorithms like SVM 
and NB. Examples of conventional approaches are 
outlined briefly. The authors in [8] underscore the 
significance of utilizing datasets from multiple 
platforms to enhance the generalizability of the 
classifier in detecting offensive language. 

They experimented with SVM and TF-IDF, and 
achieved F1 score of 84%. Besides, authors in [9] 
explore the influence of preprocessing steps on 
offensive language and hate speech classification. 
They demonstrate that thorough preprocessing 
techniques have notable effects on detection rates. 

The best experimental outcomes were achieved 
using SVM and BoW, attaining F1 scores of 95% 

Table 1. Overview of our interested dataset 

Parameters Value 

Tweet counts 11634 

Words Counts 138.3 K 

Unique words 37.9 K 

Average words per tweet 11.9 
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and 89% for hate speech and offensive 
language, respectively. 

Likewise, authors in [10] use the Arabert 
embedding with Deep Forest, the best 
experimental results showed acceptable macro-
averaged and weighted-average F1-score results 
of 63% and 80%, respectively. 

Furthermore, authors in [11] employ BoW and 
TF-IDF to categorize tweets as offensive or 
normal. Their findings indicate that ensemble 
classifier (Bagging) outperforms single classifier, 
achieving F1 score of 0.88. In similar work, the 
authors in [12] categorize tweets into those of 
normal, hate, and abusive. 

They utilize NB and SVM classifiers with 
trigrams, bigrams, and unigrams. The best 
experimental outcomes are achieved with NB, 
resulting F1 score of 0.896 and 0.744% for 
(abusive and hate vs. normal) and (normal vs. hate 
vs. abusive) tasks, respectively. 

In a distinct approach, researchers in [13] use 
Social Graph, tweet-based and profile features to 
differentiate non-abusive Twitter accounts from 
abusive ones. The best-achieved F1 score was 
85% using the NB classifier. 

2.2 Deep Learning Approaches 

In this context, these methodologies utilize a neural 
network capable of automatically learning 
representations of input tweet texts by varying the 
level of the abstraction. These learned 
representations are then leveraged to execute the 
classification task. Commonly employed 
embedding models include Mazajk and AraVec. 

The prevailing DL architectures utilized for 
Arabic hate speech classification encompass 

BERT, LSTM, and GRU.  Below, we briefly outline 
some examples of DL approaches. Authors in [14] 
categorize tweets into religious, general-hate, 
racial, sexism, or normal. 

They employ an embedding layer randomly 
initialized to learn the word embedding from the 
training data. The best experimental outcomes are 
achieved using the Hybrid CNN-LSTM model, 
resulting in an F1 score of 73%. In a similar study, 
the authors in [15] evaluate two AraVec models to 
categorize tweets into normal and hateful. The 
experiment with Hybrid CNN-LSTM achieved F1 
score results of 71.68%. 

Likewise, authors in [16] explore the influence 
of word embedding and neural networks on the 
performance rates across various classification 
tasks. They train multiple embedding models and 
subsequently employ these models to train several 
neural networks for different classification task. 

The best experimental outcomes are observed 
with Skip-gram and CNN, resulting in F1 scores of 
70.80%, 75.16%, and 87.22% for the 6-class, 3-
class, and 2-class classifications, respectively. 
Besides, the authors in [18] use ensemble CNN 
and Bidirectional LSTM (BiLSTM) classifiers based 
on the AraBERT. The best outcome is obtained 
using the average-based ensemble approach, 
yielded F1 score of 80.23%(BiLSTMs), 84.01% 
(CNNs), and 91.12% (CNNs) for 6 class, 3 class, 
and binary classification tasks, respectively. 

In a similar, authors in [17] use AraVec and 
AraBERT to categorize tweets as being normal, 
abusive, or hateful. The best performance was 
achieved using CNN, yielding F1 score of 0.721. In 
a similar, the authors in [19] use CNN with 
Multilingual BERT embedding model, yielding F1 
score of 75.51%, 78.9%, and 87.03% for 6 class, 3 
class, and binary classification tasks, respectively. 

Furthermore, authors in [20] utilize a 
bidirectional GRU enhanced by an attention layer 
alongside the AraVec to identify offensive 
language and hate speech. Moreover, they 
examine the effect of different oversampling 
techniques and pre-processing techniques on the 
performance results. 

The best outcomes consist of F1 score results 
of 0.859% and 0.75 for offensive and hate 
speech, respectively. 

In a distinct strategy, researchers in [21] fine-
tune the pre-trained AraBERT [47] for classifying 

Table 2. Optimized values of hyperparameters explored 
in DL models 

Parameters CNN LSTM BiLSTM 

Size 100 75 75 

Dropout 0.25 0.25 0.5 

Activation tanh relu relu 

Optimizer Adam Adam Adam 

Batch size 8 32 64 

Learning rate 0.01 0.002 0.002 
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tweets being offensive, vulgar, hate speech, or 
clean. They achieved an F1 score result of 83.2%. 

2.3 Gaps and Contributions 

After reviewing the current studies, we can realize 
that some current pre-trained language models 
have not yet been evaluated for hate speech 
classification from Arabic tweets. Moreover, there 
is no existing study where Monolingual, 
Multilanguage, and Multidialectal pre-trained 
language models based on transformers are 
compared to demonstrate their validity for 
classifying Arabic hate speech. In this work, we 
rely on transfer learning models due to their 
major advantages: 

They can capture long-term dependency in 
language, while it does not need a large dataset. 
Additionally, we conduct a comparative analysis 
between deep learning approaches and 
conventional approaches as our baselines. 

3. Data and Methodology 

2.4 Dataset Description 

The dataset used in this paper was published in 
[14]. The basic characteristics of the corresponding 
dataset are presented in Table. 1. The tweets were 
collected using a curated list of hashtags known to 
elicit hateful content on Twitter. Subsequently, the 
retrieved tweets were manually annotated. The 
racial hate speech class constitutes a minor subset 
of the tweets, whereas the majority belong to the 
non-hate class. 

2.5 Features Representation 

The efficacy of a classification system depends on 
how it represents the text. Specifically, for tasks 
such as tweet classification, it is essential to 
convert the tweet's textual content into an 
appropriate representation for learning a classifier. 

Hence, in this work, we adopt three distinct 
representations, which are outlined briefly below. 
The Bag of Words (BoW) [22] method stands as 
one of the foremost techniques employed for 

information retrieval. BoW centers on counting the 
occurrences of words within a given text corpus. 

This approach generates a vocabulary 
comprising unique words found across all tweets 
and utilizes these as feature vectors to indicate the 
absence or presence of such words within the 
vocabulary. Term Frequency Inverse Document 
Frequency (TF–IDF) weighting scheme that 
combines Inverse Document Frequency (IDF) with 
Term Frequency (TF). 

This technique is commonly used for Text 
Mining and Information Retrieval, which converts 
the tweet to a matrix of integer producing sparse 
matrices of the counts [23]. Word Embedding (WE) 
[24, 25] stands as an effective technique that has 
seen considerable success in recent years. A 
feature vectors space consists of unsupervised 
word embedding vectors. 

These vectors represent the semantic spaces 
of each word in a real-valued space. Word 
embedding vectors offer a dense representation of 
word meaning, where the word is characterized as 
a real-valued features vector. Word embedding 
models can be produced using static pre-trained 
models like word2vec [25], GloVe [26], and 
fastText [27], or by employing contextual pre-
trained embedding models like BERT [28]. 

Table 3. Optimized hyperparameter for the pre-trained 
language models (E=Epochs, BS=Batch Size, 
LR=Learning Rate) 

Model E BS LR 

xlm-roberta-base 10 16 3e-5 

xlm-roberta-large 5 64 1e-5 

bert-base-arabic 3 8 4e-5 

bert-large-arabic 2 16 1e-5 

bert-base-arabert 4 8 2e-5 

bert-large-arabert 5 8 1e-5 

base-multilingual-cased 5 8 1e-5 

multi-dialect-bert-base-
arabic 

4 8 3e-5 

albert-base-arabic 3 8 2e-5 

albert-large-arabic 3 8 1e-5 

base-arabertv02-twitter 4 16 1e-5 

large-arabertv02-twitter 2 16 1e-5 
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2.6 Model Description 

This subsection presents the classification models. 
We outline the conventional learning systems, the 
deep learning architectures, and the transfer 
learning models we have used. 

Traditional machine learning. We evaluate two 
models most commonly used the Multinomial 
Naïve Bayes and Support Vector Machine, which 
predict classes based on a combination 
of features. 

Support Vector Machine (SVM) [29] most well-
known classifiers since it is highly accurate and 
effective in text classification. This classifier offers 
the advantage of typically performing well even 
when trained with a limited amount of data [30]. For 
the hyperparameter optimization, we experiment 
with various values: 'C' = [1, 0.01, 10, 0.1], 
'class_weight' = [balanced, None], 'penalty' = [l2, 
l1]. Following the optimization, we utilize the linear 
SVM classifier with its default configuration. 

Multinomial Naïve Bayes (MNB) [31] is one of 
the most well-known classifiers since it is highly 
accurate and effective in text classification. 

It operates by considering the frequency of 
such word to generate in a multinomial fashion the 
data distribution. For the hyper-parameter 
optimization, we evaluate the values of: 'Alpha' = 
[0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] 
and 'fit_prior' = [True, False].  After optimization, 
the default parameters of the classifier were used. 
To derive feature vectors for inclusion for such 
classifiers, we utilize the three types of tweet 

representation previously discussed (i.e. Word 
Embedding, TF-IDF, and BoW). 

Deep Learning. The deep learning methods 
explored in this study are briefly described in the 
following. Convolution Neural Network (CNN) 
stands as the most effective neural network model, 
offering an alternative approach to traditional 
feedforward neural networks. In CNN architecture, 
different layers are sparsely connected, linking a 
local region of an input layer with neurons in the 
subsequent layer. 

The work by [32] was the first that applied CNN 
to text classification, wherein words are 
transformed into numerical values via word 
embedding. A 2-dimensional matrix is formed from 
the tweet text, where each row is a word vector in 
that tweet. The typical CNN architecture 
encompasses several stages, including a fully 
connected layer, a pooling layer, and a 
convolutional layer. 

Recurrent Neural Network (RNN) [33] is 
another class of neural network to address the 
challenge of sequential learning faced by the 
conventional neural network. The connections 
among nodes construct the directed graph over the 
temporal sequences, enabling the model to 
highlight the dynamic temporal behaviors. 

Long Short-Term Memory (LSTM) represents 
the most widely recognized variant, as introduced 
by [34], and trained via backpropagation through 
time.  LSTM networks are equipped with memory 
blocks, enabling them to learn the temporal 
sequence and their long-terms dependency 
effectively. On the other hand, Bi-directional Long 
Short-Terms Memory (BiLSTMs) facilitate the two-
way information flow. This architecture involves 
training two LSTM network simultaneously, one for 
the forward and one for the reverse direction [35]. 

In this scenario, we use word embedding as a 
feature representation. We particularly use Aravec 
[36], which consists of 300-dimensional vectors for 
each word. 

Transfer Learning. In this scenario, the process is 
to adjust a pre-trained language model to a new 
dataset through the transfer of the 
learned features. In other words, a technique to 
improve learning of a new task by transferring 
knowledge from the learned task [37]. 

Table 4. F1 score results of both traditional and 
DL classifiers 

Model Macro Weighted 

NB-BoW 43.47 70.98 

SVM-BoW 48.77 73.07 

NB-TF_IDF 28.68 65.02 

SVM-TF_IDF 48.29 72.88 

NB-AraVec 22.97 61.52 

SVM- AraVec 38.78 63.29 

CNN-AraVec 50.49 73.57 

LSTM-AraVec 49.72 73.26 

BiLSTM-AraVec 51.54 74.13 
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The transformer operates as an attention 
mechanism, enabling the learning of contextual 
relationships between words within a text. It 
includes two primary components: the encoder, 
which processes the textual input; and the decoder 
generates estimates for the corresponding 
task [38]. 

Unlike directional models that sequentially 
process textual input (e.g., right-to-left or left-to-
right), the encoder of the transformer 
simultaneously processes the entire sequence. 

This approach enables model to capture the 
word context based on their surrounding context as 
a whole. The authors in [38] achieved an 
enhancement in the translation task with the use of 
the attention mechanism avoiding relying on 
RNN, paving the way for additional 
transformer architectures. 

Bidirectional Encoder Representations from 
Transformers (BERT) is the first transformer-based 
language model introduced by Google. The model 
is pre-trained on large unsupervised text data 
based on two self-supervision tasks: 

Masked Language Modeling and Next 
Sentence Prediction. In the first task, 
approximately 0.15 of the words in such sentences 
were masked at random, and the model forecast 
the masked words. 

The second task involves the classification of 
two sentences, wherein the model was tasked with 
discerning the original orders between the two 
sentences, thereby enhancing document-
levels understanding. 

Alternatively, the authors in [39] proposed a 
cross-lingual language model refer as XLM, 
improving BERT while attaining remarkable 
achievements across different machine translation 
and cross-lingual classification tasks. 

Unlike BERT, which is not adjusted for multi-
lingual tasks due to limited shared vocabulary 
across languages, XLM tackles this challenge by 
processing all languages using a shared 
vocabulary generated based on a preprocessing 
method called Byte Pair Encoding [40, 41]. 
Additionally, XLM uses the dual-language training 
mechanism alongside BERT so as to learn inter-
language word relationship effectively. 

3 Experiment and Evaluation 

This section outlines the experimental procedures 
and the evaluation conducted to assess the 
efficacy of the pre-trained language model. By 
conducting experiments on a recently established 
benchmark Twitter dataset, aiming to address 
these research questions: 

− RQ1: Can a multi-dialectal pre-trained 
language model, based on Twitter data, 
improve hate speech detection accuracy in 
Arabic tweets? 

− RQ2: Does fine-tuning a pre-trained language 
model enhance hate speech detection 
accuracy in Arabic tweets? 

First, we present the pre-processing step we 
have applied to the chosen datasets as well as the 
hyperparameters used for DL architectures and 
transfer learning models. Then, we discuss the 
evaluation metrics and finally present the achieved 
performance results. 

3.1 Tweet Preprocessing 

The preprocessing stage plays a pivotal role in 
natural language processing systems, particularly 

Table 5. F1 score results of pre-trained language 
models before fine-tuning 

Model Macro Weighted 

xlm-roberta-base 31.64 67.13 

xlm-roberta-large 29.03 65.99 

bert-base-arabic 51.90 74.96 

bert-large-arabic 52.54 74.82 

bert-base-arabert 54.06 75.74 

bert-large-arabert 53.98 75.22 
base-multilingual-
cased 

47.12 72.57 

multi-dialect-bert-
base-arabic 

63.38 80.85 

albert-base-arabic 57.75 78.10 

albert-large-arabic 59.27 78.59 
base-arabertv02-
twitter 

57.23 77.84 

large-arabertv02-
twitter 

64.07 80.82 
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in text classification [42]. They contain elongated 
words, hashtags, user mentions, and expressions 
that make tokenization difficult. To mitigate these 
challenges, we implement the following steps: 

− Removing tweet features: This involves 
eliminating user URLs, mentions '@', hashtag 
symbols '#', punctuation, the word "RT", 
special characters (emoticons), and 
numerical characters. 

− Removing non-Arabic letters, Arabic stop 
words, diacritics and new lines. 

− Eliminating repeated characters: like (مرحباااااا) 
which means "Helloooooo", to be (مرحبا), 
which is "Hello". 

− Arabic letters standardization: 

− The letter (Taa Marbouta) (ة), which can be 
mistaken and written as (ه), we standardize 
it to (ه). 

− The Letter (Alef) (أ), which has the 
following forms ( أ-إ-آ-ا ), all the four letters 
were standardized into (ا). 

− The Arabic dash that is used for expanding 
words like in (مرحبـــــا) to be (مرحبا). 

− The Letter (Alef Maqsora) (ى) has been 
standardized to (ي). 

3.2  Hyperparameter Optimization for DL 
Models 

The DL architectures evaluated in this work contain 
numerous hyperparameter, which necessitate 
estimation to achieve optimal results. To achieve 
this, we used the performance of a validation 
dataset to select the most suitable hyperparameter 
for the test dataset. For the hyperparameter 
optimization, we conduct 10-folds cross-validation 
using the corresponding dataset. 

We employ the test data to make predictions 
while evaluating the predictions based on the 
optimized hyperparameters. 

Table 2 illustrates the optimal hyperparameter 
for the corresponding model (LSTM, CNN, and 
BiLSTM). To avoid over-fitting during the 
supervised training of a neural network, we utilize 
early stopping by ending the training procedure 
before the converging of the weights. 

3.3 Transfer Learning Fine-Tuning 

The transformers-based models used in this work 
are pre-trained trained based on formal general 
corpora (Arabert, XLM-RoBERTa, and 
Multilanguage-BERT) and based on informal 
corpora (i.e. AraBERT-Twitter). 

Thus, it is important to study the contextual 
information derived from the pre-trained layers 
while fine-tuning it for our interested downstream 
task.  The fine-tuning consists of updating weights 
using the annotated dataset. BERT takes a 
sequence of 512 tokens as input and outputs 12 
self-attention heads and a 768-dimensional vector. 

For the optimization, we use the Adam 
optimizer [44,45] which performs well for natural 
language processing and the BERT model 
specifically. Additionaly, we evaluate other 
multilingual model, we chose the xlm-roberta-base 
and xlm-roberta-large checkpoints which include 
100 languages. 

For the purposes of fine-tuning, authors in [46] 
have recommended choosing from the values of 
the following parameters: number of epochs, batch 
size, learning rate, and maximum sequence. We 
fine-tuned the corresponding models by evaluating 
different parameters as presented in Table 3. We 

Table 6. F1 score results of pre-trained language 
models after fine-tuning 

Model Macro Weighted 

xlm-roberta-base 52.57 74.57 

xlm-roberta-large 48.98 72.74 

bert-base-arabic 56.43 76.71 

bert-large-arabic 55.30 75.68 

bert-base-arabert 56.59 76.89 

bert-large-arabert 57.05 76.65 

base-multilingual-
cased 

48.91 73.26 

multi-dialect-bert-base-
arabic 

65.95 81.86 

albert-base-arabic 61.26 79.20 

albert-large-arabic 62.21 79.74 

base-arabertv02-twitter 70.76 84.69 

large-arabertv02-twitter 69.71 84.45 
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set the maximum sequence length as 64 for all 
the experiments. 

3.4 Evaluation Metrics 

To assess the effectiveness of the corresponding 
approaches, we will use various evaluation 
measures capable of accurately assessing the 
model's performance. Given that hate speech 
classification poses the imbalanced learning 
challenge, we will particularly emphasize the 
Macro-average and Weighted-average metrics to 
compute comprehensive performance metrics. 

These metrics are presented as follow: 
Precision (P), referred to as positive predictive 
value, indicates the proportion of correctly 
classified positive instances out of all instances 
classified as positive. For example, the Precision 
of the Normal class is estimated as follows: 

PNormal = CCNormal / TCNormal, (1) 

where CCNormal is the Correctly Classified as 
Normal and TCNormal is the Total Classified as 
Normal. Recall (R) (also known as sensitivity), is 
the division of correctly predicted positive 
instances to the total positive instances. For 

example, the Recall of the Normal class is 
calculated as follows: 

RNormal = CCNormal / TNNormal, (2) 

where CCNormal is the number of Correctly 
Classified as Normal, and TNNormal is the Total 
number of Normal instances. F1 measure (F1) is 
the harmonic mean between the Precision and 
Recall. For example, the F1 of the Normal class is 
estimated as follows: 

3.5 Results Analysis 

In this subsection, we explore the achieved results 
of the approaches we evaluated. We employed the 
tenfold cross-validation method to evaluate 
performance metrics. This method involved 
splitting the dataset into 10 equally sized parts 
while maintaining a balanced representation of 
each class from the original dataset. One part was 
designated for testing, while the remaining parts 
were utilized for training. 

This process was repeated 10 times, and the 
performance metric scores were averaged across 
the 10 iterations of cross-validation. Table 4 
presents the prediction performances attained for 
both conventional machines leaning and DL 
classifiers. We utilized word embedding as an input 
feature vector in all models. 

In the case of traditional machine learning 
approaches, also we tested also the statistical-
features BoW and TF–IDF including SVM-BoW, 
SVM-TF-IDF, MNB-BoW, and MNB-TF–IDF. In 
most traditional classifiers, BoW achieves better 
performance results than the TF-IDF and word 
embedding features. 

The baseline experiments (DL and traditional 
learning approaches) did not perform satisfactorily 
due to an insufficient number of training 
instances. The DL-based approaches achieve 
better performance results than conventional 
machine learning approaches. 

These findings are in line with the majority of 
related works, where DL based approaches found 
to have comparable accuracy results to traditional 
learning algorithms on the corresponding task. 

Table 7. Comparison of F1 score results with the latest 
state-of-the-art classification approaches (N=Non-hate 
speech, S=Sexism, Re=Religious, Ra=Racial, 
M=Macro-averaged) 

 N S Re G Ra M 

A 0.85 0.21 0.10 0.12 0.09 0.27 

B 0.86 0.42 0.50 0.25 0.24 0.45 

C 0.87 0.41 0.54 0.30 0.29 0.48 

D 0.86 0.43 0.59 0.31 0.25 0.49 

E 0.85 0.42 0.56 0.45 0.20 0.50 

F 0.87 0.50 0.64 0.49 0.27 0.55 

G 0.86 0.44 0.59 0.47 0.22 0.52 

H 0.87 0.37 0.47 0.28 0.26 0.45 

I 0.87 0.49 0.56 0.47 0.24 0.53 

J 0.88 0.49 0.67 0.41 0.37 0.57 

K 0.89 0.50 0.73 0.42 0.32 0.57 

O 0.92 0.70 0.80 0.61 0.50 0.71 

F1Normal= 2(PNormal × RNormal) / (PNormal+ RNormal). (3) 
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As highlighted in Table 5, the pre-trained 
language model before fine-tuning substantially 
outperforms the baseline systems. It is important to 
note that multidialectal-based transformer models 
achieve better results than monolingual and 
multilingual-based models, yielding F1 score 
results of 63.38% and 80.85% for Macro averaged 
and Weighted averaged, respectively. 

Table 6 shows the accuracy results of the pre-
trained language model after fine-tuning. It is 
important to note that the fine-tuning of the pre-
trained language model improves the 
accuracy results. Additionally, the multidialectal-
based models outperform monolingual and 
multilingual ones, yielded F1 score results of 
70.76% and 84.69% for Macro averaged and 
Weighted averaged, respectively. 

Subsequently, we compare the performance of 
fine-tuned multidialectal-based model base-
arabertv02-twitter (O) with three existing 
conventional machine learning approaches: 

a. [12], which leveraged N-grams with NB. 

b. [11], which combine TF–IDF and BoW 
with Bagging. 

c. [8], which use TF-IDF with SVM, and seven 
existing DL-based approaches, namely. 

d. [14], that learned word Embedding using the 
training data and use the hybrid CNN-LSTM 
for classification. 

e. [19], Multilingual BERT embedding model 
with CNN. 

f. [20], which use AraVec and bidirectional GRU 
augmented with attention layer. 

g. [17], Which used AraBERT and AraVec 
embedding with CNN. 

h. [15], which used AraVec and hybrid 
CNN-LSTM. 

i. [18], which used AraBERT embedding and 
ensemble CNNs. 

j. [21], which fine-tuned the pre-trained 
AraBERT language model. 

k. [47], which use base-arabertv02-twitter without 
fine tuning. When comparing our approach 
with other state-of-the-art classifiers presented 
in Table 7, our model exhibits the 
highest Accuracy. 

Unlike CNN and LSTM, our method does not 
necessitate a substantial quantity of labeled 
dataset to achieve promising performance result; 
this is a common requirement in many DL 
approaches. Moreover, in contrast to NB and SVM, 
our model eliminates the need to extract and 
design handcrafted features. 

Given the nature of social media data, 
characterized by frequent usage of slang, 
abbreviations, and informal language, our method 
effectively processes the input words while 
considering their contextual surroundings. 

Experimental results demonstrated that our 
proposition outperforms existing approaches by a 
difference between [8% and 21%] and [14% and 
44 %] in weighted averaged and macro averaged 
F1 scores respectively. Comparing these results, 
we highlight the significance of multidialectal-
based models trained on Twitter data since those 
models achieve the best results. 

Furthermore, we highlight the significance of 
parameter tuning to discover the optimal 
hyperparameter values. Subsequently, we conduct 
an error analysis on the best pre-trained language 
models. For each model, we scrutinize tweets that 
were misclassified. 

Furthermore, we examine tweets that were 
misclassified by all four models. Table 8 showed 
the number of tweets misclassified by such pre-
trained language model. 

The four best accurate models (bert-base-
arabertv02-twitter (X), bert-large-arabertv02-twitter 
(Y), bert-large-arabic (W), and bert-base-arabert 
(Z)) predicted the same wrong labels 726 times out 
of 5217.Regarding the best system bert-base-

Table 8. The number of misclassified tweets by best 
pre-trained language model. (TE = Total Error, 
Q = All in Common) 

 N S Re G Ra TE 

X 604 201 162 571 247 1785 

Y 631 240 185 535 203 1794 

W 890 183 166 536 176 1951 

Z 713 240 160 545 243 1865 

Q 334 45 30 160 57 726 
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arabertv02-twitter, the Non-HS instances 
mislabeled are biased towards General-HS; the 
Sexism-HS, Religious-HS, Racial-HS, and 
General-HS instances mislabeled are biased 
towards Non-HS. Fig. 1 shows the confusion 
matrix of the optimized system. 

4 Discussion 

Although quite effective, current Arabic hate 
speech classification approaches are costly, as 
they need a huge number of labeled tweets to 
attain promising accuracy results. The tweets 
labeling process is very expensive and labor-
intensive while hindering the deployment of 
artificial intelligence systems in the industry. 

In contrast, our proposition does not require a 
huge number of labeled datasets. Furthermore, the 
machine-learning approaches use hand-crafted 
features, which have confronted data sparseness 
and the curse of dimensionality. Conversely, ours 
automatically learn features from the textual data. 

As can be shown in Table 4, the minor 
performance results are obtained using the 
traditional learning classifiers followed by the deep 
learning classifiers, while the major accuracy 
results go for transfer learning-based classifiers. In 
Tables 5 and 6, we can notice that the fine-tuning 

of pre-trained language models improves the 
accuracy of results. 

Furthermore, the multidialectal pre-trained 
language models based on Twitter data outperform 
monolingual and multilingual ones. In Table 7, we 
can notice that our proposition outperformed the 
latest state-of-the-art. The lower performance 
results are observed for the racial class, and the 
higher performance are obtained for the normal 
class. This disparity can be attributed to the 
significant class label imbalance present in 
the dataset. 

6 Conclusion 

Today, the detection of hate speech from Arabic 
tweets has garnered significant attention from 
scholars worldwide. 

In this paper, we evaluate Arabic hate speech 
classification by utilizing transfer learning based on 
a pre-trained language model. We conducted 
extensive experiments following three approaches: 
two conventional machine-learning approaches, 
three DL approaches, and twelve transfer-
learning approaches. 

The results achieved by the transfer learning 
approaches outperform traditional and deep 
learning models utilized in this work. The major 

 

Fig. 1. Confusion matrix of our proposition 
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contribution of this work is the evaluation of the 
recent pre-trained language models for Arabic hate 
speech classification. Specifically, we differentiate 
the performance of multilingual models with 
monolingual and multidialectal ones. 

Experimental results show that the 
multidialectal models trained on Twitter data 
outperformed monolingual and multilingual models 
trained on general data. In our future work, we 
intend to pursue various avenues. Primarily, we 
aim to refine the contextual embedding model, with 
a focus on adapting its vocabulary for the hate 
speech classification task. A costlier technique 
could be to consider training a novel AraBERT 
model that is customized for Arabic hate 
speech classification. 

Additionally, we intend to evaluate various data 
augmentation approaches to overcome the 
challenges of imbalanced data. From a research 
standpoint, we will utilize our proposed systems to 
examine Arabic Twitter discussions on various 
subjects to determine the extent of hate speech 
conversations with public discourse and to 
understand how their capabilities and 
sophistication evolve. 
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