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Abstract. The detection of breast cancer poses
a significant challenge in the field of medicine. It
represents the second type of the largest cases of
cancer deaths in women. Several techniques have
been found to solve the problem or make a better
diagnosis. Recently, Support Vector Machine based
systems are the most common and are considered a
better diagnostic assistant in cancer detection research.
The quality of the results generated depends on the
choice of some parameters such as the kernel function
and the model parameters. In this paper, we analyze
and evaluate the performance of several kernel functions
in the SVM algorithm. Experiments are conducted with
different training-test phases generated by the holdout
method and we used the WBCD (Wisconsin Breast
Cancer Database) to analyze the results. The results
are evaluated by using the following performances
measures: classification accuracy rate, sensitivity,
specificity, positive and negative predictive values. To
validate the results obtained by these different kernel
functions, we use different values for the kernel functions
parameters and SVM model parameters and we record
the optimal parameters values. Finally, we show that
the Cauchy kernel and the Rational Quadratic kernel are
identical and converge to the same value.

Keywords. Support vector machine, kernel function,
breast cancer, diagnosis, classification, sequential
minimal optimization.

1 Introduction

Breast cancer originates from the inner lining of
milk ducts or the lobules responsible for supplying

milk to the ducts. It manifests as a tumor
within the breast, which can either be benign
(non-cancerous) or malignant (cancerous).

Malignant tumors grow and develop into cancer.
Breast cancer is a leading cause of mortality
worldwide. Every year the breast cancer is
detected in 1,3 million women on the world, the
mortality rate increases rapidly with more than
1,6 million cases in 2010 which corresponds to
425000 deaths [6]. The correct diagnosis of breast
cancer is very important to help the doctors.

Detecting cancerous cells at an early stage,
before they spread, can significantly increase
the survival rate for patients by over 97%1

Nevertheless, classifier systems are widely used
to solve the problem of cancer classification and
to help the experts to make a good diagnosis.
The major advantages of classifier systems are the
minimization of possible errors that might be made
and the ability to give a detailed examination.

The Support Vector Machine (SVM) is
recognized as one of the most widely used
classifier systems which has become quite an
active research field in machine learning. Recently,
Support Vector Machines have been shown to
give good results and a good generalization
performance in the medical diagnosis field
precisely in cancer classification [19, 8, 11, 3, 17].

1American Cancer Society Hompage. (2008). Citing Internet
sources Available from: www.cancer.org.
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Fig. 1. The figure shows the optimal hyperplane and the
support vectors

Table 1. Some kernel functions defined in the literature
(M. is multiquadric and q. is quadratic)

Kernel name Formulation

Linear k(x, y) = xt.y

Polynomial k(x, y) = (xt.y)d

Gaussian k(x, y) = exp(−∥x−y∥2

2σ2 )

Sigmoid k(x, y) = tan(P1.xt.y + P2)

Cauchy k(x, y) = 1

1+
∥x−y∥2

σ

Inverse M. k(x, y) = 1√
∥x−y∥2+c2

Quadratic k(x, y) = (xt.y + 1)2

Multiquadric k(x, y) =

√
∥x− y∥2 + c2

Power k(x, y) = −∥x− y∥d

Rational Q. k(x, y) = 1− ∥x−y∥2
∥x−y∥2+c

Wave k(x, y) = θ
∥x−y∥ sin

∥x−y∥
θ

Spherical k(x, y) = 1− 3
2
∥x−y∥

σ + 1
2 (

∥x−y∥
σ )3

Achieving strong performance with the
SVM method heavily relies on the selection
of appropriate kernel functions. These
functions enable the algorithm to identify the
maximum-margin hyperplane within a transformed
feature space.

Additionally, the effectiveness of the SVM
hinges on the careful tuning of kernel function

parameters and the cost parameter C in the SVM
model has a very important role to get a good
classification accuracy rate [18]. Numerous studies
in the literature have explored medical diagnosis of
breast cancer using the Wisconsin Breast Cancer
Database (WBCD).

For instance, Quinlan achieved a classification
accuracy rate of 94,74% through 10−fold
cross-validation using the C4.5 decision tree
method [16]. Similarly, Hamilton et al. achieved a
classification accuracy rate of 95,00% using the
RIAC method [9].

Nauck and Kruse obtained 95,06%
classification accuracy rate by using the
neuron-fuzzy techniques [13]. Albrecht et al.
reached 98,80% classification accuracy rate
with logarithmic simulated annealing with the
perceptron algorithm [2].

Übeyli, by using SVM reached 99,54%
accuracy [21]. Polat and Günes used the
LS-SVM (Lest Square SVM) and 98,53% was
obtained [15]. Guijarro-Berdias et al. achieved
96,00% classification accuracy rate by applying
linear-lest squares [7].

Akay, by using SVM with feauter selection,
reached 99,51% classification accuracy rate
[1]. Marcano-Cedeño et al., by applying
artificial metaplasticity neural network reached
99.26% classification accuracy rate [12]. In this
paper, we compare and analyze several kernel
functions proposed in the literature by using
different values of kernel functions parameters and
cost parameters.

This study has been applied to the Wisconsin
Breast Cancer Dataset (WBCD) which is a widely
studied data set from the field of breast cancer
diagnosis. We evaluate the results by calculating
the performance measures: classification accuracy
rate, sensitivity, specificity, positive and negative
predictive values.

In this work we have done two studies: the
first one is the realization of a comparison protocol
between the different kernels and the second is
to reach a high classification accuracy rate in the
context of breast cancer diagnosis.

Also, we show that the Cauchy kernel and the
Rational Quadratic kernel are identical and give the
same results.
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Table 2. Kernel functions with parameters

Kernel name Kernel Parameter

Linear /

Polynomial d

Gaussian σ

Sigmoid P1, P2

Cauchy σ

Inverse Multiquadric c

Quadratic /

Multiquadric c

Power d

Rational Quadratic c

Wave θ

Spherical σ

Table 3. WBCD description of attributes

Attribute
numbers

Attribute
description

Values of
attribute

1 Clump thickness 1-10

2 Uniformity of cell size 1-10

3 Uniformity of cell shape 1-10

4 Marginal adhesion 1-10

5 Single epithelial cell size 1-10

6 Bare nuclei 1-10

7 Bland chromatin 1-10

8 Normal nucleoli 1-10

9 Mitoses 1-10

The rest of the paper is organized as follows:
First in Section 2, we give an overview of SVM. In
Section 3, we recall some kernel functions defined
in the literature. In Section 4, we analyze the
results of the different kernel function. Finally, we
conclude with some perspectives.

2 Overview of Support Vector Machine

Vapnik [4] introduced the Support Vector Machine
(SVM) as a learning algorithm aimed at minimizing
structural risk. SVM is a method used for data

analysis and is employed in both classification and
regression tasks.

Given a set of input data, SVM predicts
which of two possible classes each input belongs
to. To achieve classification, SVM constructs
a hyperplane in a high-dimensional space to
effectively separate the data into classes.

This hyperplane is positioned to maximize the
distance to the nearest training point of any class,
ensuring optimal separation. While multiple valid
hyperplanes exist, SVM uniquely identifies the
optimal hyperplane. The data points that are
closest to this maximum margin hyperplane are
referred to as Support Vectors.

Identifying this hyperplane involves
reformulating the classification problem into a
quadratic optimization task, which can be resolved
using various algorithms such as Sequential
Minimal Optimization, Trust Region, Interior Point,
Active-Set, and others. One key benefit of SVM
is its effectiveness in high-dimensional spaces,
even when the number of dimensions exceeds the
number of samples.

2.1 Mathematical Formulation

Given a training data set of N points (xi, yi) with
input data xi ∈ Rd, i = 1, ...,N and output data
yi ∈ {−1, 1} given by an expert. The margin is the
distance of closest examples from the line decision
(hyperplane). The equation of hyperplane can be
written as the set of points X satisfy:

⟨w,xi⟩+ b = 0. (1)

The hyperplane that optimally separates the
data is the one that minimizes : 12w

Tw.
This gives the final standard formulation of an

SVM as a minimization problem:{
min 1

2w
Tw,

yi(⟨wi,xi⟩+ b) ≥ 1, i = 1, ...,N .
(2)

This represents a quadratic programming
optimization challenge. Quadratic optimization
problems are a widely recognized category
of mathematical optimization problems, with
numerous algorithms available for their resolution.
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Table 4. The results obtained by different kernel
functions with the bestvalue of kernel parameter

Kernel name Results Kernel Parameter

Linear 97.40 /

Polynomial 96.54 d = 3

Gaussian 99.13 σ = 3

Sigmoid 96.53 P1 = 1, P2 = −1

Cauchy 98.27 σ = 10

Inverse Multiquadric 98.27 c = 1

Quadratic 93.59 c = 5

Multiquadric 64.93 c = 9

Power 34.63 d = 2

Rational Quadratic 98.27 σ = 10

Wave 97.83 θ = 2

Spherical 64.93 σ = 0.1

The dual problem is obtained by introducing
Lagrange musltipliers:

max
N∑
i=1

αi − 1
2

∑
i,j

αiαjyiyj ⟨xi,xj⟩ ,

αi ≥ 0,
N∑
i=1

αiyi = 0.

(3)

Solving equation (3) with constraints equation
determines the lagrange multipliers, and the
optimal separating hyperplane is given by:

w∗ =

N∑
i=1

αiyixi, (4)

b∗ = −1

2
⟨w∗,xr + xs⟩ , (5)

where xr and xs are any support vector from each
class satisfying:

αr,αs > 0, yr = −1, ys = 1. (6)

The hard classifier is then:

f(x) = sign(⟨w∗,x⟩+ b∗). (7)

In this study, we choose the Sequential
Minimal Optimization algorithm to solve the
quadratic problem.

2.2 Sequential Minimal Optimization

The Sequential Minimal Optimization (SMO),
introduced by [10, 14] is another widely used
algorithm for training Support Vector Machines
(SVMs). The basic idea of smo is to decompose
the initial problem into sub problems (reducing the
working sets to two points).

the optimal solution can be computed
analytically for this two points in the working
set [5]. Given the current solution (αold

i ,αold
j ),

the optimal update is computed to obtain the
new solution (αnew

i ,αnew
j ) by using the following

update rule:

αnew
j = αold

j − yj(Ei − Ej)

η
, (8)

where

Ek = f(xk)− yk, (9)
η = 2⟨xi,xj⟩ − ⟨xi,xi⟩ − ⟨xj ,xj⟩, (10)

where Ek is the error between the SVM output on
the kth example and the true label yk.

Next we clip αnew
j to lie within the range [L,H]

i.e L ≤ αnew
j ≤ H, to satisfy the constraint that

0 ≤ αj ≤ C :

αnew
j =


H
L
αnew
j

si αnew
j ≥ H,

si αnew
j ≤ L,

si L < αnew
j < H.

(11)

The bounds L and H are given by the following:

– If yi ̸= yj , L = max(0,αold
j − αold

i ), H =

min(C,C + αold
j − αold

i )

– If yi = yj , L = max(0,αold
i + αold

j − C), H =

min(C,αold
i + αold

j ).

Finally, having solved for αnew
j , the value of αnew

i

is given by:

αnew
i = αold

i + yiyj(α
old
i − αold

j ). (12)

The algorithm proceeds as follows:

1. Find a Lagrange multiplier α1 that violates the
Karush − Kuhn − Tucker (KKT ) conditions
for the optimization problem.
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Table 5. The results obtained by different kernel
functions with the bestvalue of SVM model parameter

Kernel name cost parameter C

Linear 1

Polynomial 1

Gaussian 13

Sigmoid 1

Cauchy 6

Inverse Multiquadric 2

Quadratic 5

Multiquadric 1

Power 2

Rational Quadratic 6

Wave 1

Spherical 1

Table 6. Sensitivity and specificity calculated for the four
best kernel functions

Kernel name Sensitivity Specificity

Gaussian 98.67 100

Inverse M. 98.67 97.53

Cauchy 98.67 97.53

Wave 98.67 96.30

2. Pick a second multiplier α2 and optimize the pair
(α1,α2).

3. Repeat steps 1 and 2 until convergence.

Upon satisfaction of the Karush-Kuhn-Tucker
(KKT) conditions by all Lagrange multipliers within
a specified user-defined tolerance, the problem is
considered solved.

While this algorithm ensures convergence,
heuristics are employed to select the pair
of multipliers to expedite convergence. To
achieve optimal performance, certain parameters
in SVM must be meticulously chosen. These
parameters include:

– The regularization parameter C, which controls
the trade-off between errors of the SVM on
training data and margin maximization [20].

– The parameters of the kernel functions.

– The choice of the kernel affect the performance.

3 Kernel Functions

However, in 1992, V. Vapnik et al.
proposed a method to generate nonlinear
classifiers by employing the kernel trick with
maximum-margin hyperplanes.

Kernel functions enable a nonlinear
transformation of data into a linear separation
of examples in a new space known as the ”feature
space,” which is high-dimensional.

This characteristic enhances the likelihood
of discovering a separating hyperplane.
Nevertheless, in this new space, the goal is
to find the following hyperplane:

h(x) = ⟨w, Φ(x)⟩+ b. (13)

We arrive at the following optimization problem:
max

N∑
i=1

αi − 1
2

∑
i,j

αiαjyiyj ⟨Φ(xi), Φ(xj)⟩ ,

αi ≥ 0,
N∑
i=1

αiyi = 0.

(14)

By introducing the notion of kernel function
we have:

k(xi,xj) = Φ(xi)Φ(xj). (15)

The expression of the hyperplane will be
defined as follows:

f(x) =
∑
i

αiyiΦ(xi)Φ(xj) + b. (16)

Under these conditions we didn’t need to know
the transformation Φ and the calculation will be
much less expensive.

We can directly construct a kernel function
by respecting certain condition defined by the
theorem of Mercer which states that: a kernel
k(xi,xj) is a symmetric continuous function that
maps two variables to a real value and k must be
positive semi definite.

Unfortunately, this theoretical condition is
difficult to verify, it does not provide guidance for
the construction of kernels or on the transformation
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Fig. 2. The figure shows the result obtained by the
different kernel

Φ. Several researches has been devoted to
constructing a kernel more exotic and adapted to
a special problem. In table 2, we show the several
kernel functions proposed in the literature:

4 Experimentation

In this research, we analyze and evaluate the
performance of different kernel functions in the
SVM algorithm by using different values of kernel
functions parameters and SVM model parameters.
We use the SMO algorithm to solve the quadratic
problem of maximizing the margin.

This analysis is conducted using the publicly
accessible breast cancer database known as
WBCD (Wisconsin Breast Cancer Database),
which originates from the work undertaken at the
University of Wisconsin Hospital.

This set of data was taken from Fine Needle
Aspirates (FNA) of humain breast tissue classified
as benign and maligne. The WBCD database
contains 699 clinical cases, there is 458 (65,50%)
benign cases and 241 (34,50%) malignant cases.

The data of WBCD contains 16 instances
with missing attirubte values which led us to
limir our experimentation to 683 clinical cases.
Nevertheless, the class has a distribution of 444
(65%) besnigs cases and 239 (35%) malignant
cases. Each instance in the database has a nine

Table 7. Positive predictive value and negative predictive
value calculated for the four best kernel functions

Kernel name Pos. Pre. Val. Neg. Pre. Val.

Gaussian 100 97.59

Inverse M. 98.67 97.53

Cauchy 98.67 97.53

Wave 98.01 97.50

attributes; each attributes has an integer value
between 1 and 10.

In the following table, we detailed the attributes
of WBCD: The SVM method consists of two
phases: training and testing. To randomly divide
the database into two parts, we employ the holdout
method, a form of cross-validation.

This method randomly partitions the initial data
into two sets: the training set and the testing
set. Less than one-third of the initial data is
allocated for testing purposes. With the holdout
method, we obtained 455 samples(65,10%) for the
training phase and 244 samples (34,90%) for the
testing phase.

In the first step, we analyze and compare the
results obtained by the different kernel functions
in terms of accuracy classification rate. The
values of kernel functions parameters were chosen
by experimentation.

For the cost parameter C (regularization
parameters that control the flexibility), we have
varied its value between 0.01 and 1000 then we
record the values which give a good accuracy
classification rate.

In the second step, we take the four kernel
functions which have given a good results and we
analyze these kernels in the function of: sensitivity,
specificity, positive and negative predictive values.
The parameters mesearse are calculated using the
following equations:

where:

NTP : Number of True Positives
NTN : Number of True Negatives
NFP : Number of False Positives
NFN : Number of False Negatives
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Table 8. Classification accuracy rate (CAR)
obtained with SVM by using the Gaussian kernel
and other classifiers

Author and years CAR

Quinlan (1996) 94.74

Hamiton et al. (1996) 95.00

Nauck and Kruse (1999) 95.06

Albrecht et al. (2002) 98.80

Polat and Günes (2007) 98.53

Guijarro-Berdias et al.
(2007) 96.00

Akay (2009) 99.51

A. Marcano-Cedeño
(2011) 99.26

This Study 99.13

Classification accuracy:
NTP +NTN

NTP +NTN +NFP +NFN

Sensitivity:
NTP

NTP +NFN

Specificity:
NTN

NFP +NTN

Positive Predictive Value:
NTP

NTP +NFP

Negative Predictive Value:
NTN

NTN +NFN

In table 5, we present the good results (the high
value of: classification accuracy rate and its kernel
parameters) obtained by each kernel function after
several trials and evaluation of different values
of the kernel functions parameters with SVM
model parameters. We clearly observe, that the
Gaussian, Cauchy, inverse multiquadratic, rational
quadratic, linear and polynomial kernels have given
a good results with an advantage for Gaussian
kernel function (99,13%).

We show also, that the Cauchy, inverse
multiquadratic and rational quadratic kernel have
nearly the same classification accuracy rate. The
low classification accuracy rate is registered for
the multiquadratic and spherical kernel function
with 64,93%.

During the assessments, we show that the
results obtained by the rational quadratic kernel
and the Cauchy kernel are identical despite the
different tests with different training and testing set.

Therefore, we will show that the rational quadratic
kernel and the Cauchy kernel are identical and
converge to the same value:

k(x, y) =
1

1 +
∥x− y∥2

c

,

=
1

c+∥x−y∥2

c

,

=
c

c+ ∥x− y∥2
.

(17)

The Rational Quadratic kernel is defined as:

k(x, y) = 1− ∥x− y∥2

∥x− y∥2 + c
,

=
∥x− y∥2 + c

∥x− y∥2 + c
− ∥x− y∥2

∥x− y∥2 + c
,

with 1 =
∥x− y∥2 + c

∥x− y∥2 + c
,

=
c

∥x− y∥2 + c
.

(18)

Finally, we can say that using the rational
quadratic kernel function gives the same results as
the Cauchy kernel function. So, the transformation
of data by these kernel are the same and
give the identical new space. In table 7, we
show: sensitivity, specificity, positive and negative
predictive values obtained by the four kernels
which have given a high diagnostic accuracy.

Table 8, gives the classification accuracies of
SVM with Gaussian kernel and previous methods
applied to the same database.

5 Conclusion

In this study, we have analyze and compared
the performance of several kernel on the support
vector machine in the context of breast cancer
diagnosis. We conducted our experimentation
on the WBCD database. We have shown that
the Gaussian kernel has given a good results in
term of classification accuracy rate (99,13%). The
Gaussian kernel have a great performance with:
98,67% in sensitivity and 100% in specificity. Also,
we have shown that the both Cauchy kernel and
the Rational Quadratic kernel are the same and
give the same results.
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