
Proactive Load Balancing to Reduce Unnecessary Thread
Migrations on Chip Multi-Processor (CMP) Systems

Ulises Revilla-Duarte1, Marco A. Ramı́rez-Salinas1,∗ , Luis A. Villa-Vargas1, Andrei Tchernykh2

1 Instituto Politécnico Nacional, Centro de Investigación en Computación,
Mexico

2 Centro de Investigación Cientı́fica y de Educación Superior de Ensenada,
Departamento de Ciencias de la Computación,

Mexico

{mars, lvilla}@cic.ipn.mx, chernykh@cicese.mx, urevillaa09@sagitario.cic.ipn.mx

Abstract. For a Linux operating system scheduler that
is aware of Chip Multi-Processor (CMP) systems to carry
out load balancing is extremely important and quite
challenging. The scheduler is a vital component of the
Linux kernel responsible for choosing the next thread to
run and allocating to a processor core for execution. This
process involves primarily a load-balancing procedure
that provides the thread migration between the cores of
a CMP system. A modern Linux scheduler is designed
to obtain the best possible performance while ensuring
a fair allocation of the processor cores’ time among
the normal (non-real-time) threads, which is known as
Completely Fair Scheduling (CFS) policy. However, this
policy collaterally can cause a relentless execution of the
load-balancing procedure, and therefore, an excessive
number of thread migrations. According to the literature,
an increased cache invalidation, scheduling latency,
and power consumption are issues inherent to this.
In this paper, we propose and evaluate a proactive
load-balancing (PLB) algorithm to reduce unnecessary
thread migrations on CMP systems. By comprehensive
experimental analysis, we show that our PLB algorithm
reduces the number of thread migrations by 43.8% on
average without degradation of performance.

Keywords. Linux CFS, load balancing, perf event tool,
PMU counters, chip multi-processor.

1 Introduction

The scheduler is a crucial component of the Linux
kernel responsible for choosing the next thread
to run and allocating to a processor core for
execution [35, 37, 1, 13, 22]. This process involves
primarily a load-balancing procedure that provides
the thread migration between the cores of a
CMP system. For a modern Linux scheduler that is
aware of CMP systems to carry out load balancing
is extremely important and quite challenging.

“The load-balancing procedure is based on a
number of criteria of varying relative importance.
The scheduling algorithm policy determines the
importance of each of the criteria. Unfortunately,
it is impossible to design an algorithm that fits in
all the criteria simultaneously; trying to improve
performance according to one criterion would
adversely affect the expected performance by
another” [14].

Nowadays, the Linux scheduling policy is
designed to obtain the best possible performance
while ensuring a fair allocation of the processor
cores’ time among the normal (non-real-time)
tasks1. It is known as Completely Fair Scheduling
(CFS) policy [20, 24, 28]. However, this policy

1Linux uses the term “task” to refer to both an entire process
and a process thread.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 623–645
doi: 10.13053/CyS-28-2-4403

ISSN 2007-9737

collaterally can cause a relentless execution of
the load-balancing procedure and an excessive
number of thread migrations [21].

It results in several disadvantages, such as an
increased cache invalidation, scheduling latency,
and power consumption [8, 21]. Let us briefly
expose how the Linux scheduler’s main functions
work to gain a better understanding of the leading
role of load balancing in CFS performance. A
modern Linux kernel scheduler is composed of two
functions: scheduler tick() and schedule().

The scheduler tick() function is used by the
kernel’s timer system to periodically update the
process’ runtime statistics as well as to mark
processes needing rescheduling (e.g., a higher
priority task has just showed up, or a running task
has simply spent too much time on a core). It is
named the Periodic Scheduler.

The schedule() function is called by scheduler
tick() after a current process has been marked

as needing rescheduling to fairly decide which
process most deserves to run next. The current
task itself may also call schedule() when it has
to wait for a resource or an event’s non-blocking
signal in order to voluntarily yield, in the meantime,
its core’s time to another task.

A task temporarily yields its core’s time
without being blocked—the task remains in
the TASK RUNNING state—by calling the
sched yield() system call which ends up
calling schedule() (ergo, Linux is a preemptive
multitasking operating system).

The schedule() function is named the Main
Scheduler. It is aware of CMP systems (a.k.a.
homogeneous or symmetric multi-core systems).
In the process of choosing the next task to run,
schedule() carries out load balancing of both
real-time (RT) and normal (CFS) tasks.

RT tasks are assigned the highest static
priorities in the system (by default range from 0 to
99) in order to receive enough processing time to
meet critical time constrains.

schedule() calls the function pull rt task()2

to pull RT tasks from busier cores and distribute
them according to their priorities among a group
of RT subqueues (struct rt rq) embedded as a
field in the current core’s run queue (struct rq).

CFS tasks are user tasks (including those of
root) and kernel daemons that share a processor
core according to their dynamic priorities given
by nice values (numbers from -20 to 19 with a
default of 0). As soon as schedule() is called, it
disables the kernel preemption making sure not to
be interrupted.

A run queue (struct rq) is a per-core, linear
set of fields holding different types of data and
statistics to handle the core’s runnable tasks. The
run queue is the primary scheduling data structure
on which the Linux scheduler operates.

On the per-core run queue a CFS subqueue
(struct cfs rq) is built as a red-black tree data
structure where tasks are arranged according to
their runtime (given by the vruntime parameter).
Tasks that have not run a relative long time are
placed on the lower-left side of the tree. The
left-most task is always picked to run next. Also,
the run queue holds one RT subqueue (struct
rt rq) implemented as a doubly linked list per
static priority level (0-99).

To balance CFS tasks, the Main Scheduler
first checks the per-core cfs rq->nr running flag
for load imbalance. This flag keeps track of the
number of ready-to-run CFS tasks queued in a
core’s CFS subqueue. Then, schedule() calls the
function idle balance() which calls the function
load balance() to pull CFS tasks from bustling
cores and insert them into the CFS subqueue
(struct cfs rq) in the current core’s run queue
(struct this rq).

Once this pull-load balancing is done, the
Main Scheduler picks the next task to run and
performs the context switch. At this point, the Main
Scheduler must be sure that there are no RT tasks
in the current run queue waiting to be dispatched.

2From kernel versions 2.6.27 to 3.14.79 pre schedule rt()

was used as an enveloping function for pull rt task().
Recently, from version 3.15.10 to the current stable
version 4.16.6, pull rt task() is included in the
pick next task rt() function and invoked prior to pick
the next rt task to run.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 623–645
doi: 10.13053/CyS-28-2-4403

Ulises Revilla-Duarte, Marco A. Ramírez-Salinas, Luis A. Villa-Vargas, et al.624

ISSN 2007-9737

Fig. 1. Main scheduler’s functions involved in
load balancing

In order to be executed promptly, the Main
Scheduler calls the function push rt tasks()3 to
push RT tasks, if any, from the current core’s run
queue onto the run queue of other cores with lower
priority tasks (or even experiencing a lack of tasks).

Just after this push-load balancing is done, the
Main Scheduler becomes preemtable and checks
if the reschedule flag bit (TIF NEED RESCHED)
in the thread information structure (struct
thread-info) of the current task is set. If set,
the search for a new task starts over. If not,
schedule() exits.

Main Scheduler’s functions involved in load
balancing are shown in Fig.1. When a processor
core is allocated to a new task, the previous task
that was running on that core has either gone to the
ready or blocked state [31], and can be migrated
to another core when a new pull-load balancing
operation is performed.

3From kernel versions 2.6.27 to 3.13.11 post schedule rt()

was used as an enveloping function for push rt tasks().
The Main Scheduler now invokes push rt tasks() through
the balance callback() function just after context switching
(from version 3.14.79 to the current stable version 4.16.6).
balance callback() is part of a novel mechanism which has
added a new field for a callback head data structure straight
in the core’s run queue. struct callback head includes a
void (*func) field that allows a faster handling of the callback
functions push rt tasks() and pull rt task().

Whenever load imbalance is detected,
the load-balancing procedure is triggered to
distribute the system load among the cores in a
homogeneous multi-core processor, which results
in excessive task migrations and the consequent
drawbacks mentioned earlier.

On the other hand, in accordance with the
literature [6, 11, 33, 44], threads’ contention for
shared resources on a multi-core processor is
the major cause of system performance drop.
This paper proposes and evaluates a proactive
load-balancing (PLB) algorithm for Linux on CMP
systems to avoid a decrease in performance due
both to contention among the threads for shared
resources and excessive thread migrations.

Our PLB algorithm keeps a high level of system
performance by proactively averting contending
threads from running concurrently as well as
by reducing unnecessary thread migrations at
runtime. We propose runtime-updated IPC
thresholds, which are the basis of the operation
of the proactive load balancing. Also, a
complementary support algorithm to migrate
threads on CMP systems is designed.

The PLB algorithm takes advantage of the
Performance Monitoring Unit (PMU) accessible
from each core of a modern multi-core processor,
and the perf event tool, a powerful profiling
subsystem included in the Linux kernel
since version 2.6.31. To meet our proactive
load-balancing criterion, our algorithm carries out
the following actions at runtime:

1. Configuration of the per-core PMU counters
to read different performance-event samples
simultaneously at constant time intervals;
namely, those corresponding to the Instructions
Retired, Unhalted Core Cycles and Thread
Migrations events.

Instructions Retired is the number of
fully executed instructions and Unhalted Core
Cycles is the number of cycles executed on the
core (when the core was not in HALT state), i.e.
it shows the total elapsed cycles. These events
are sampled for each application thread as a
part of the workloads launched separately.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 623–645
doi: 10.13053/CyS-28-2-4403

Proactive Load Balancing to Reduce Unnecessary Thread Migrations on Chip Multi-Processor ... 625

ISSN 2007-9737

2. Obtaining the Instructions Per Cycle (IPC)
statistic which reflects the system performance
by using the samples of the Instructions Retired
and Unhalted Core Cycles events. In this way,
IPC is obtained as follows:

IPC = instructions retired / unhalted core cycles

The initial value for the IPC-event (or performance)
threshold is set to the first obtained IPC value.

3. Comparison of the subsequent IPC values with
the current IPC-event threshold while the workload
is running.

4. Reacting proactively to avoid performance
ramp-down based on the result of this comparison.

These actions allow to proactively decide
whether a running thread must be migrated
to another core, and whether its current
performance threshold value (previously-sampled
IPC value) needs to be updated depending on
the result of the comparison.

If a current thread’s IPC count is below of its
corresponding performance threshold value, the
thread is migrated. If this count is higher, then
the current performance threshold value is updated
to this new IPC count (i.e., runtime-updated IPC
thresholds are used).

In this way, only when a runtime-updated IPC
threshold is not reached, our algorithm triggers
the migration of contending threads in order to
find couples of co-running threads that do not
contend (or contend as little as possible) for shared
resources on the cores, and therefore, leading
back to a high level of system performance.

We thereby say that the algorithm obeys a
criterion that proactively avoids contending threads
from running concurrently.

Threads composing each workload are initially
bound to a single core (e.g., core0) as the startup
configuration. Our PLB algorithm is implemented
at user level, which is sufficient for the accurate
assessment [2].

In Section 8, we present a comparative
table of different workloads when they run on
Linux, first using the original (unmodified) Linux
load-balancing procedure, and then merging our
algorithm into the Linux kernel. This table
shows that the number of thread migrations

Fig. 2. Architecture of our proactive load balancer

is significantly reduced (by 43.8% on average)
without harming system performance when the
PLB algorithm is used.

Fig.2 illustrates the architecture of the proposed
PLB algorithm. It shows its main components
(rounded boxes) interacting with a dual-core CMP
system (squared boxes). Next, we briefly describe
each component addressed with more detail
throughout this article.

– Resource Monitoring through the PMU: The
PMU (Peformance Monitoring Unit) included
within each core is composed of a special set
of counting registers (Section 3) that we have
configured to count the number of instructions
that are fully executed (Instructions Retired),
elapsed cycles (Unhalted Core Cycles) and
(Thread Migrations).

– Runtime Sampling (IPC): PMU registers are
used to collect performance events sampled at
regular time intervals at runtime (Section 3).

– perf event Kernel Subsystem: PMU registers
setup, runtime performance-event sampling and
registers reading are all done through perf event
(Section 3).

– Proactive Load-Balancing Algorithm: Our
algorithm uses runtime-updated IPC thresholds
that indicate the minimum IPC values that must
be reach at any sampling instant to hold the
system performance at a steady high level.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 623–645
doi: 10.13053/CyS-28-2-4403

Ulises Revilla-Duarte, Marco A. Ramírez-Salinas, Luis A. Villa-Vargas, et al.626

ISSN 2007-9737

Table 1. Main features of the example CMP system

Processor

Intel CoreTMi5 660 @ 3.33GHz

Number of Cores 2 physical

Number of Threads 4
(2 BIOS disabled)

L1 Cache 2 x 32 KB

L2 Cache 2 x 256 KB

L3 Cache 4096 KB

Micro-architecture Intel Westmere
(Codename Clarkdale)

Main Shared
Elements

L3 Cache, IM and PCI-e Controllers,
and DMI and FDI interfaces

PMUs Core, uncore and offcore
MSRs register sets

Memory Size 4 GB

Memory Type DIMM DDR3 Syncronous
1066 MHz (2 x 2GB)

Operating System Ubuntu-GNU/Linux vanilla
Linux kernel 3.1.2-SMP x86 32

Compiler gcc version 4.5.2-8ubuntu4

Therefore, we rely on these threshold values
to proactively decide whether to migrate a thread
(Section 6).

– Thread-Migration Algorithm: If a thread needs
to be migrated, our complementary support
algorithm designed to migrate threads on a CMP
system is invoked (Section 5). Next, the effect
of this migration on the system performance is
monitored and our PLB algorithm again decides
whether to migrate a certain thread in order to
maintain high system performance.

Table 1 summarizes the main features of the
example CMP system used. The vanilla4 Linux
kernel version 3.1.2 is run on the Intel Corei5
660 processor with codename Clarkdale based
on the Intel Westmere microarchitecture [7, 16]
whose virtual cores (i.e., hyper-threading) have
been disabled from the BIOS, thus having a CMP
system with only 2 physical cores. The remainder
of this paper is organized as follows: Section 2
briefly surveys related work. Section 3 describes
at length the research framework used. Section 4
is devoted to workload selection.
4The standard Linux kernel available on the kernel.org
web page.

Section 5 unveils the design stages of our
thread migration support algorithm. Section 6
explains in detail the implementation of the
algorithm that embodies our proposed proactive
approach to perform load balancing. Section 7
delineates the evaluation experiments for the PLB
algorithm. Section 8 reports the results. Finally,
Section 9 concludes the paper and provides an
avenue for future work.

2 Related Work

The design of scheduling algorithms that are
aided by statistics collected via multi-core
architecture-specific performance monitoring
counters at run time to avert shared resource
contention has been proposed in previous
research. For this, they use either the Oprofile [26]
or the Perfmon2 [29] external monitoring tools that
are no part of the vanilla Linux kernel.

These algorithms aim to minimize the
contention for the different shared resources
within a CMP processor, such as the L2 or L3
caches, the system bus, the instruction queue,
the core itself, and so on, therefore improving the
overall system throughput.

Next, we present some previous work that has
been done to implement scheduling algorithms that
tackle the problem of shared resource contention in
today homogeneous multi-core architectures:

Zhang X. et al. [43] developed a flexible
framework for Throttling-Enabled Multi-Core
Management (TEMM), which efficiently finds an
optimal hardware throttling configuration for a
user-specified resource management objective.

“It can support a variety of objectives for
fairness, quality-of-service, overall performance,
and power optimization. Throttling configuration
refers to the settings of the platform-specific
registers involved with the duty cycle modulation
and dynamic voltage and frequency scaling
(DVFS) mechanisms, originally designed for power
management within processors.

TEMM searches for a reference configuration
based on model predictions, and iteratively refines
the search with a broad set of previously executed
configuration samples. This search stops when a
high-quality throttling configuration that meets the

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 623–645
doi: 10.13053/CyS-28-2-4403

Proactive Load Balancing to Reduce Unnecessary Thread Migrations on Chip Multi-Processor ... 627

ISSN 2007-9737

objective is found”. Sáez J.C. et al. [30] designed a
non-work- conserving framework (i.e., a core may
be idle at any time) to improve priority enforcement
based on statistical information collected through
hardware performance monitoring counters (PMU).

“When multiple threads run simultaneously, the
system tries to detect changes in the behaviour of
high priority (HP) threads that comes from negative
interactions with other low-priority (LP) threads.
Those changes trigger CPU disabling actions
that temporarily block the potentially incompatible
LP threads”.

Herdrich A. et al. [15] adapted rate-based
techniques (clock modulation and frequency
scaling) that are employed to address power
management and cache/memory Quality of
Service (QoS) issues.

The QoS term refers to the ability to guarantee
a certain level of performance. Basically, what
they do is to regulate the time the core is active
and/or its working voltage and frequency (DVFS
technique) if it is running a low-priority task that
harms the performance of a high-priority task due
to system cache or memory contention.

Shi Q. et al. [32] proposed both a
load-balancing algorithm based on the
construction of scheduling domains by taking
shared L2 cache into account and the design
of load vectors to weigh the processor core’s
workload. Their goal is to reduce L2 cache misses
(so main memory accesses are also reduced),
and therefore, decrease the total execution
time of threads.

Lim Q. et al. [21] implemented an operation-
zone-based load balancer to improve the
performance of multi-core systems at runtime.
It provides three multi-core load-balancing policies
based on the CPU employment.

“The cold zone policy loosely performs
load-balancing operations; it is adequate when the
CPU utilization of most tasks is low. The hot zone
policy performs load-balancing operations very
actively, and it is adequate for high CPU use. The
warm zone policy takes the middle between the
cold zone and the hot zone”.

Our research work proposes a proactive
approach to perform load balancing of software
threads on homogeneous multi-core processors

(i.e., CMP). Our proactive approach is primarily
based on runtime-updated IPC thresholds that we
devised and used in our decision-making model
(Section 6) in order to reduce task migrations
originated in the Linux scheduler.

On the example CMP machine used (Table 1),
our PLB algorithm maintains two different threads
from each workload running concurrently as
long as it results in the least shared resource
contention, and therefore, to the same extent,
thread migration is reduced; thus helping to
improve system performance.

Our work relies heavily on the performance
monitoring subsystem of the Linux kernel,
perf event, to implement our routines that
simultaneously monitor different performance
events at runtime—thus providing valuable insight
into how to use and configure perf event.

In a first intance, we developed a complete
workload-launcher tool that we used both to
synchronously launch workloads made up of
various CINT speccpu2000 benchmarks on the
example multi-core system and to collect the
resulting statistical data from a special set of
performance-event counters located within each
core’s PMU (Performance Monitoring Unit) in the
CMP processor.

Our results show that the number of
migrations performed on the application threads
(benchmarks) that make up the workloads used
is significantly reduced (by 43.8% on average)
without degradation of performance when our PLB
algorithm is utilized.

3 Research Framework

This section describes the research framework
used for the implementation of our PLB algorithm.
Our research framework consists mainly of both
the Performance Monitoring Unit (PMU) included
in each core of a multi-core processor and the
perf event profiling tool available in the recent
versions of the Linux kernel.

They are used jointly to implement our
IPC-based decision-making model as well as to
design the procedure for carrying out properly
the sampling of different performance events
simultaneously at runtime, which are the essential

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 623–645
doi: 10.13053/CyS-28-2-4403

Ulises Revilla-Duarte, Marco A. Ramírez-Salinas, Luis A. Villa-Vargas, et al.628

ISSN 2007-9737

Table 2. An excerpt from our code to collect
instructions, cycles and cpu-migrations events in a single
monitoring session

(1) attr.type = PERF TYPE HARDWARE;

(2) attr.size = sizeof(struct perf event attr);

(3) attr.disable = 1;

(4) attr.config = PERF COUNT HW INSTRUCTIONS;

(5) fd = perf event open(attr, pid, 0, -1, 0);

(6) fd1 = perf event open(attr, pid, 1, -1, 0);

(7) attr.config = PERF COUNT HW CYCLES;

(8) fd2 = perf event open(attr, pid, 0, fd, 0);

(9) fd3 = perf event open(attr, pid, 1, fd1, 0);

(10) attr.type = PERF TYPE SOFTWARE;

(11) attr.config = PERF COUNT SW CPU MIGRATIONS;

(12) attr.exclude kernel = 0;

(13) fd4 = perf event open(attr, pid, 0, fd, 0);

(14) fd5 = perf event open(attr, pid, 0, fd1, 0);

parts of our algorithm. Programming details of the
PMU counters and perf event are also explained in
this section. On the other hand, the different major
program elements which make up the scheduler
such as its main data structures and fuctions
have been studied at length directly from the
Linux kernel.

Basically, we mostly used the TOMOYO Linux
Cross Reference [9], a very helpful web-based tool,
to navegate and analyze extensively the vanilla
kernel scheduler source code. Also, the Open
MPI Portable Hardware Locality tool (hwloc) [5, 12]
is first utilized to determine our system’s topology
and object numbering (lstopo), and then to bind
threads onto processor cores (hwloc-bin).

3.1 The Performance Monitoring Unit

Processors supporting Intel 64 and IA-32
architectures have a Performance Monitoring
Unit (PMU) consisting of a collection of
Performance Monitoring Counter registers (PMCs)
and Performance Monitoring Event registers
(PMEs) [2, 25, 11, 17, 39]. PMCs and PMEs
are implemented as Model Specific Registers
(MSRs). They are accessed via the RDMSR and
WRMSR instructions.

PMCs are used to collect event counts or
serve as hardware buffers, so they are named
Counter MSRs. PMEs are used to indicate what
events need to be monitored, so they are named
Event Programming MSRs. The number of MSR
registers that make up the PMU depends on the
processor model.

A monitor is defined to be a combination of a
PME for the configuration and one or more PMC
registers for collecting data. A counting monitor
need only one PMC register.

Therefore, the counting monitors can each
be programmed to count one event at a
time. A monitoring session consists of several
steps that must be followed to collect valid
measurements. Those steps can be summarized
as follows [25]:

i) Program the monitors (paired PME and
PMC registers).

ii) Enable the monitors.

iii) Run the code to be monitored.

iv) Disable the monitors.

v) Collect results.

Each core built on a CMP chip has its own
register bank which contains the MSR registers
that make up the PMU [17]. The PMU and other
registers in the register bank are grouped together
to form the architectural state of a process thread.

That is, the architectural state is the set of
registers within each core in the CMP processor
that holds the state of its respective running
subprocess. Therefore, on a CMP processor,
each running thread has its own independent
architectural state.

When a thread migrates from one core to
another, its PMU state also moves. That is, counts
of different events collected in the MSR registers
in the source core’s PMU are replicated into the
same type of registers in the target core’s PMU.
It is this important design feature of multi-core
processors that allowed us to implement code to
follow a thread from one core to another without
loosing information on the accounts of events.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 623–645
doi: 10.13053/CyS-28-2-4403

Proactive Load Balancing to Reduce Unnecessary Thread Migrations on Chip Multi-Processor ... 629

ISSN 2007-9737

Table 3. Workloads made up of CINT
speccpu2000 benchmarks

CINT2000 workloads

W1 (gzip gcc mcf) W11 (gzip bzip2 eon)

W2 (bzip2 gcc mcf) W12 (bzip2 eon crafty)

W3 (eon gcc mcf) W13 (gzip eon crafty)

W4 (crafty gcc mcf) W14 (bzip2 gzip crafty)

W5 (gzip gcc bzip2) W15 (eon gzip mcf)

W6 (eon gcc bzip2) W16 (bzip2 gzip mcf)

W7 (crafty gcc bzip2) W17 (crafty gzip mcf)

W8 (gzip gcc eon) W18 (eon bzip2 mcf)

W9 (crafty gcc eon) W19 (crafty bzip2 mcf)

W10 (gzip gcc crafty) W20 (crafty eon mcf)

3.2 The Linux perf event Kernel Subsystem

Perf event is a performance monitoring tool
merged into the Linux kernel from version
2.6.31 [10, 40, 41]. The principal goal of perf event
is to provide Linux with the support needed
to effectively utilize the PMU, thus allowing an
advanced performance analysis.

Currently, it is a powerful kernel subsystem
increasingly used in the research and development
of new computer systems such as multi-core
architectures. Support for the latest architectures
is added according to new kernel versions.

The perf event tool includes plenty of
commands to collect and analyze performance
and trace data. It can measure both hardware
and sofware events. Software events are those
that originate in the kernel. Some examples are:
the number of context-switches, cpu-migrations or
page-faults.

Hardware events are micro-architectural
events such as the number of elapsed cycles,
instructions retired, L1 cache misses, etc. The
perf event interface (API), perf event open()

(file /tools/perf/perf.h), wraps a single system
call which supports a set of requests to configure,
measure and collect performance monitoring
information. It mainly provides a mechanism to
read and write PMU registers.

By means of this system call, the PMU registers
can be read during the execution of an application.
Therefore, event samples can be obtained at
runtime. This system call has the following
prototype:

int perf event open(struct perf event attr

*attr, pid t pid, int cpu, int group fd,

unsigned long flags);

A description of its arguments can be found in
the perf event documentation (file /tools/perf/

Documentation) and the references [10, 40].
The perf event attr structure is comprised of
several attribute fields used to provide detailed
configuration information for the event being
created. The perf event interface selects a PMU’s
counting monitor and configures its PME register
based on the event to be monitored (given by the
attr.config attribute).

It then returns an integer which is the file
descriptor (fd) of the corresponding PMC register
(counter) where the performance event counts will
be collected. The fd is used to access the PMC
register via standard system calls such as read()

which is used to read the counter or ioctl()

which is used to perform the counter input/output
operations: reset, enable and disable.

Next, we show how the perf event open()

system call is configured in order to implement a
single monitoring session that collects hardware
events such as instructions and cycles as well
as a software event such as cpu-migrations

simultaneously for both system cores.
An excerpt from our code to measure these

events is shown in Table 2. Line (1) specifies
the type attribute of the events to be measured
which can be hardware or software type. As
instructions and cycles are collected the
hardware type is specified.

Line (2) sets the size attribute to the attr

structure size. Line (3) sets the disable attribute
to its default value, which is 1, to emphasize
that the counter must start out disabled (due to
synchronization reasons as discussed in Section
6). Then, line (4) introduces the config attribute
which is nothing else but the name of the event to
be measured. This attribute is set to collect the
instructions event.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 623–645
doi: 10.13053/CyS-28-2-4403

Ulises Revilla-Duarte, Marco A. Ramírez-Salinas, Luis A. Villa-Vargas, et al.630

ISSN 2007-9737

Lines (5) and (6) define the system calls used
to count the number of instructions retired on
both cores (the third argument is cpu = 0 for
core0 and cpu = 1 for core1). Additionally,
the group fd argument has been set to -1 to
establish fd and fd1 as the group leaders for
core0 and core1 respectively. Group leaders are
used to collect different events as a unit for the
same set of instructions that are fully executed
(i.e., instructions retired). Line (7) shows the
corresponding value for the config attribute to
measure the cycles event. Lines (8) and (9)
define the system calls used to count the number of
elapsed cycles on both cores. Here, the group fd

argument is set to fd and fd1, the file descriptors
for the group leaders.

Next, both the type and config attributes
are changed to measure the cpu-migrations

event. Line (10) now specifies the software
type. Line (11) shows the right name for this
event. As cpu-migrations is an event that
happens in kernel space5 (ergo, also recorded in
the se.nr migrations field of the task descriptor),
the exclude kernel attribute is changed from its
default value of 1 to 0 to include events taking place
in kernel space.

Line (12) shows the new value for this attribute.
The system calls to measure cpu-migrations on
both cores also have the group fd argument set to
fd and fd1 as shown in lines (13) and (14). Thus,
the instructions, cycles and cpu-migrations

events are collected as a unit for the same set of
instructions retired. Finally, for all events, the pid

argument is set to the id number of the process
thread to be monitored and the flags argument is
set to zero.

4 Workload Selection

Workloads made up of different combinations
of three CINT speccpu2000 benchmarks [36]
were previously characterized using the vanilla
Linux kernel 2.6.32.10 patched with the Perfmon2
profiling tool [29] on an Intel Core2 Duo E6550
multi-core processor [16].
5Linux divides virtual address space into two parts known as
kernel space and user space (also called kernel mode and
user mode respectively).

Table 3 presents our workloads and Fig.3
shows the bar graphs that result from their
characterization using some key metrics. These
metrics are:

a) Instructions Per Cycle (IPC): fully executed
instructions divided by the total CPU cycles:
IPC = instructions retired / unhalted core cycles

b) L2 MISSES: data and instruction misses at
second level (L2) cache. On the Intel Core2
Duo processor, the L2 cache is a unified cache
that is shared by both cores to serve L1 cache
misses of instructions and data.

c) BUS TRANS MEM:BOTH CORES: Memory
Bus Transactions due to both cores. That is,
memory requests initiated by any core on the
system bus.

d) INST QUEUE:FULL: cycles during which the
instruction queue is full. The instruction queue
is a unit where instructions wait until they are
ready for execution. An instruction is ready
for execution when its operands have already
been computed.

As can be seen in Fig.3, a smaller number of
instructions per cycle is executed for workloads
W1 to W4 and W15 to W20. Also, the number of
L2 cache misses is too large for such workloads.
Furthermore, both the number of memory requests
and the number of cycles during which the
instruction queue is full are also too large for these
same workloads.

This indicates that the benchmarks composing
workloads W1 to W4 and W15 to W20 contend
with at least one of their co-runners for shared
resources intensely. In particular: the L2 cache,
the system bus and the instructions queue.
Therefore, such workloads are regarded as best
suited to carry out experiments in which a stress
capacity for our CMP system is required.

5 Design of the Complementary
Support Algorithm to
Migrate Threads

The kernel uses the sched setaffinity() system
call to provide a different mask of cores (new mask)
to a task.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 623–645
doi: 10.13053/CyS-28-2-4403

Proactive Load Balancing to Reduce Unnecessary Thread Migrations on Chip Multi-Processor ... 631

ISSN 2007-9737

Fig. 3. Some metrics used for the CINT Speccpu2000 benchmarks characterization

First, this system call obtains a cpumask
bitmap called cpus allowed from the thread’s
task descriptor (task struct structure) 6. On
the cpus allowed bitmap one bit is set for each
online core on which the thread can run (inherited
from the process of which it is a part). Then,
a bitwise AND operation is performed between
the cpus allowed and an input mask (in mask)
bitmaps to obtain new mask7.

6sched setaffinity() calls the cpuset cpus allowed()

function, which ends up calling the task cs() function with
a pointer to task descriptor as parameter to retrieve the
cpuset structure for the task. The cpuset structure holds
the cpus allowed cpumask bitmap. Since version 4.0.9, this
structure includes the effective cpus cpumask bitmap which
is used instead of cpus allowed for this very purpose.

7Through cpumask and() which is called by
sched setaffinity().

If the core to which the current task is bound is
not part of the new mask, sched setaffinity()

performs all the migration process8. The
sched setaffinity() function receives a task
id and an input mask as parameters. As a
task id is assigned, it is necessary to obtain
the corresponding task descriptor (since the
cpus allowed bitmask is there).

This is done through the
find process by pid() function called by
sched setaffinity(). The various stages
involved in the implementation of our algorithm
that carries out the migration of threads between

8sched setaffinity() calls the set cpus allowed ptr()

function to perform the entire process of migrating the thread
when the core it is executing on is removed from the
allowed bitmask.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 623–645
doi: 10.13053/CyS-28-2-4403

Ulises Revilla-Duarte, Marco A. Ramírez-Salinas, Luis A. Villa-Vargas, et al.632

ISSN 2007-9737

Algorithm 1: mctopology algorithm
Input: Input mask in hex
Output: Length
Arguments: *buffer: user space data string

length: length of the entered data string
1 Cpumask-type array: A-domain-core, B-domain-core;
2 procedure MCTOPOLOGY(mask);
3 Charater array: in mask;
4 Integer variables: new mask, num cpus, cpui, A-domain;
5 Pointer to character: *mask string;
6 num cpus←−get the number of cpus in the system (NR CPU) ; ▷ NR CPU is a kernel variable

7 in mask←−get mask from user space (length of buffer);
8 mask string←−get address of (in mask);
9 change what’s in mask string to hex;

10 save mask string in new mask;
11 for cpui←−0, num cpus do
12 if cpui is online then ▷ its corresponding bit is set in the default kernel cpumask

13 right shift new mask i positions;
14 do a bitwise AND operation between the;
15 right shifted new mask and a 0×1 mask;
16 assign the result to A-domain;
17 if A-domain=1 then
18 save cpui in A-domain-core;
19 else
20 save cpui in B-domain-core;

21 Return length

the two physical cores of our example CMP
processor (Table 1), which we have called
sched setmigration newmask(), are described
next. Likewise, our algorithm can be easily
extended to a system with a larger number of
cores. sched setmigration newmask() is invoked
within our proactive load-balancing algorithm to
migrate threads when needed. These stages are:

Stage 1: The Linux kernel’s
sched setaffinity() function (file
/kernel/sched.c) is modified so that it accepts
a task descriptor as a parameter instead of
the id of the corresponding task (hence, the
bulky-code find process by pid() function is
removed). Since the cpus allowed bitmask can
be obtained from the task descriptor, this improves
code complexity (ergo, power consumption also
improves [4, 38]).

The cpus allowed and input mask are used
by the kernel to obtain the new mask mask that
the scheduler checks repeatedly to know which
cores are offline and perform the thread migration
process accordingly.

We have called the improved function
sched setaffinity() (same system-call name

prefixed with double underscore9), which is merged
into our migration sched setmigration newmask()

algorithm described in detail in Section 6. As we
mentioned earlier in the Introduction, our work is
based on the vanilla Linux kernel version 3.1.2.
From version 5.15.67, the core part of the code
within sched setaffinity()10 (now found in

9So it is treated as an internal function and no checks are
made on the user address space (the function is then executed
faster) [42].

10The essential code for obtaining the cpus allowed cpumask
bitmap and migrating.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 623–645
doi: 10.13053/CyS-28-2-4403

Proactive Load Balancing to Reduce Unnecessary Thread Migrations on Chip Multi-Processor ... 633

ISSN 2007-9737

Algorithm 2: sched setmigration newmask() algorithm
Input: current task’s pid, core number
Output: retval; ▷ 0 if success, error code if failure

1 Cpumask-type array: A-domain-core, B-domain-core;
2 procedure sched setmigration newmaskpid, core;
3 Integer variable: retval;
4 Pointer to current task: *curr;
5 curr←− get current task(pid); ▷ kernel’s own function

6 if core=0 then
7 retval←−call sched setaffinity(curr, A-domain-core); ▷ core1 /∈ A-domain-core

8 else
9 if core=1 then

10 retval←− call sched setaffinity(curr, B-domain-core); ▷ core0 /∈ B-domain-core

11 else
12 Return error code

13 Return retval

/kernel/sched/core.c) is wrapped in a function
that also bears the same name prefixed with
double underscore (sched setaffinity()).
However, sched setaffinity() still uses the
find process by pid() function to obtain the
thread’s task descriptor.

Stage 2: Algorithm 1 shows our algorithm
called mctopology (i.e., multi-core topology) which
is designed to construct from an input mask in
hexadecimal notation two domain masks of cores:

A-domain-core and B-domain-core

The input mask is devised to allow grouping
cores that are physically adjacent (and so sharing
resources, e.g., a common cache) into domain
masks (i.e., scheduling domains) such that threads
should preferably be moved between the cores in a
domain. To pass the input mask to the kernel to be
processed, the /proc/topology directory and the
user cpumask input virtual file are created as a
means of communication between the user space
and the kernel space.

In lines 10 and 11, the number of cores in
the system (taken straight from the kernel variable
NR CPU) is stored in the num cpus variable and
the input mask is stored in the in mask variable
respectively. In lines 12 – 14, in mask’s address is
assigned to the mask string pointer and the string

value stored at the address where mask string

is pointing is changed into a hexadecimal format
and stored in the new mask variable. Lines 15 – 28
comprise the method for grouping cores into
scheduling domains so that a thread is migrated
to a core within the same domain. In this way,
the thread’s information stored in the cache that is
shared among the cores within the domain is not
moved to another system cache (resulting in lower
migration cost).

This section of code first tests if the bit that
corresponds to the core at position i (cpui) is set
in the default kernel cpu allowed cpumask (i.e., if
the core is online). If so, a right shift operation
on new mask of i positions is performed and a
bitwise AND operation between the right-shifted
new mask and a 0x1 mask (to select adjacent
cores) is executed. Then, the result is assigned to
the A-domain variable (similarly, a 0x2 mask could
have been used for the B-domain variable).

Depending on the result that has been stored
in A-domain, the core is saved in either the mask
A-domain-core or B-domain-core. Since our
system has only two (online) cores, the domain
masks A-domain-core and B-domain-core store
corei (i=0) and corei (i=1) respectively. Depending
on the number of cores in a multi-core system,
more complex layouts of scheduling domains can
be obtained.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 623–645
doi: 10.13053/CyS-28-2-4403

Ulises Revilla-Duarte, Marco A. Ramírez-Salinas, Luis A. Villa-Vargas, et al.634

ISSN 2007-9737

Fig. 4. Sequential diagram for our PLB algorithm

As the number of cores increases, the setting of
an input mask so that the selection of the adjacent
cores be optimal is a matter of key importance.

Stage 3: An algorithm to update the current
task’s cpumask bitmap with either the mask
A-domain-core or B-domain-core is devised and
implemented as a system call. It is invoked within
our Proactive Load-Balancing algorithm to migrate
threads when needed. We named it:

sched setmigration newmask()

Our sched setmigration newmask() algorithm
receives, as a parameter, the number of the core
to which the task must be migrated. Depending
on the core number, the algorithm chooses
either the A-domain-core or B-domain-core

domain mask. The algorithm then calls the
sched setaffinity() function with the current

task descriptor and the new mask as parameters,
so the current task is migrated to the target core.

For our example dual-core system (which
has two physical cores and hyperthreading
disabled), the default kernel cpumask is
0x11 (both cores are online), so when the
A-domain-core domain mask is chosen within our
sched setmigration newmask() algorithm, the
current task is forced to leave core0 and migrate to
core1. Similarly, when the B-domain-core domain
mask is chosen, the current task is forced to leave
core1 and migrate to core0. This algorithm is
shown in Algorithm 2.

In line 7, the current task descriptor is obtained
first. In lines 8 – 17, a domain mask for the
sched setaffinity() function is chosen as its

second parameter according to the core number
that is passed to sched setmigration newmask().
Since our system has only two (online) cores, there
is one core per domain.

On Linux, threads are always migrated from
one run queue to another. Before being migrated,
the kernel must suspend the execution of the
thread running on the local core and save its
task context (including performance statistics)
accordingly. These actions are part of a context
switching procedure performed in kernel mode.
For a thread, its task context is obtained from
its task descriptor (task struct structure) and
CPU registers11.

The task descriptor contains all of the data
needed to keep track of the thread, whether it
is running or not. Some of the primary fields
it includes are12: A thread info structure that
holds all requiered processor-specific low-level
information about the thread, a state variable,
a *stack pointer to its kernel-mode stack, a *mm

pointer to its virtual address space (mm struct

structure, also called memory descriptor),
and a thread struct structure that holds the
architecture-specific state of the thread.

The thread’s virtual address space13 is divided
into several regions of type vm area struct each
of which contains different information of the
running thread such as its user-mode stack, code,
data, and so on. When entering kernel mode to
run the context switcher, the instruction pointer
(EIP), the status register (EFLAGS, also known
as a condition-code register or CCR), the user
stack pointer (EBP), the segment selector of the
user data segment (USER DS) and the segment
selector of the user code segment (USER CS) of
the thread being migrated are saved automatically

11It is not necessary to save the full state of the machine for a
thread, as it is using the same memory, program code, files
and devices as the process of which it is a part. A thread must
maintain only some state information of its own.

12From the latest stable kernel version 5.19.5.
13The process that spawns the thread initially shares its address

space with it. Later, when the thread modifies or writes to a
part of this space, a copy of that part is made for the thread
itself (known as the Copy-On-Write technique) [34].

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 623–645
doi: 10.13053/CyS-28-2-4403

Proactive Load Balancing to Reduce Unnecessary Thread Migrations on Chip Multi-Processor ... 635

ISSN 2007-9737

Algorithm 3: proactive load-balancing algorithm Part 1
Input: application’s executable code and its own parameters
Output: performance events’ statistics of the monitored application thread

1 procedure perf thread stat() ; ▷ input is entered at the command line

2 child pid←−fork()
3 if child pid < 0 then ▷ the parent does this

4 failed to fork

5 if child pid ̸= 0 then ▷ the child does this

6 do −→ preparatory steps prior to launching the application thread;
7 close one end of the pipe 1;
8 read the open end of pipe 2;
9 execvp←− application’s name;

10 read the open end of pipe 1; ▷ the parent does this

11 do −→ the counters’ settings; ▷ See Table 2

12 ioctl←− RESET, fdi; ▷ a file descriptor (fd) selects a counter

13 ioctl←− ENABLE, fdi;
14 t0 ←− time(& start); ▷ the start runtime

15 close one end of pipe 2;
16 k ←− 0;
17 waitpid←− child pid, WNOHANG ; ▷ in order to not suspend the execution of the parent thread

on the kernel-mode stack14. The context switcher
then saves in the thread struct structure housed
in the task descriptor, the remainder of CPU
registers that hold the state of the machine at the
time the core is deallocated from the thread.

Thus, since the thread’s task descriptor is
moved from the local run queue to the target run
queue, the thread’s task context can be restored
and its execution resumed (a thread is always
scheduled from the run queue on to the core in
user mode [18]).

CPU cycles consumed in all this moving that
the kernel does to migrate threads result in
pure overhead, because no useful work (IPC) is
done [34, 8, 22, 23].

In this light, our PLB algorithm maintains
two different threads from each workload running
concurrently as long as it results in the least shared
resource contention, and therefore, to the same
extent, thread migration is reduced; ultimately
preventing system performance from declining.

14A context switch is always initiated by an interrupt. The
interrupt mechanism saves automatically this data on the
kernel-mode stack [18, 3, 42, 31].

In the next section, we first illustrate
sequentially how our algorithm works, and
then explain its pseudocode line by line.

6 Proactive Load-Balancing
(PLB) Algorithm

6.1 Sequential Diagram

A sequential diagram to depict the interaction of the
various threads involved in our algorithm is shown
in Fig. 4. In this diagram the leading function
(parent thread) called perf thread stat()

appears in the upper left and tagged with the
number 1. When the algorithm starts, it calls the
function perf thread stat() which spawns a child
thread using the kernel’s standard fork() function.

Next, the child thread starts executing in parallel
to the parent until the parent thread stops and
waits for the child to complete the preparatory
steps prior to launching the application (which will
be detailed in the next section) before carrying
out the counters’ setup. Using an inter-thread
communication technique known as pipes, the
parent and child get synchronized by sending

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 623–645
doi: 10.13053/CyS-28-2-4403

Ulises Revilla-Duarte, Marco A. Ramírez-Salinas, Luis A. Villa-Vargas, et al.636

ISSN 2007-9737

Algorithm 4: proactive load-balancing algorithm Part 2
1 while do
2 if k = 0 then ▷ first pass inside the while loop

3 refval1←− ipcval1;
4 refval2←− ipcval2

5 if k ̸= 0 then
6 if refval1 < ipcval1 then
7 refval1←− ipcval1

8 if refval2 < ipcval2 then
9 refval2←− ipcval2

10 if count2 ̸= 0 && ipcval1 < refval1 && mf1 ̸= 1 then
11 res←− sched setmigration newmask(child pid, 1); ▷ our algorithm to migrate threads

12 mf1←− 1;
13 mf2←− 0;
14 refval1←− 0; ▷ refval1 is reset

15 if count3 ̸= 0 && ipcval2 < refval2 && mf2 ̸= 1 then
16 res←− sched setmigration newmask(child pid, 0); ▷ our algorithm to migrate threads

17 mf2←− 1;
18 mf1←− 0;
19 refval2←− 0 ; ▷ refval2 is reset

20 k ←− k + 1

21 t1 ←− time(&stop); ▷ the end runtime

22 ioctl←− DISABLE, fdi;
23 read the final values of the statistics;
24 print the performance events’ statistics of the monitored application thread;

messages between them. A null message is sent
from the end of a pipe that gets closed, to the
end that remains open to read the message. The
close() function is used to close one end of a pipe,
whereas the read() function is used to read at the
other end.

This is shown through the points A-C. When the
parent thread receives the null message from the
child, the parent resumes execution and performs
the counters’ setup. Straight afterwards, the
parent thread first resets and enables the counters
and then starts measuring the runtime parameter
through the time() function.

Meanwhile, the child thread waits for the parent
to finish these steps. Right after the parent thread
has started measuring the runtime parameter, it
sends a null message to the child by closing one
end of a second pipe (D).

The child thread reads the message at the
other end of this pipe, resumes execution, and
launches the application by means of the execvp()

function. Now, this is shown through the points
C-E. While the application is running, the parent
thread reads the counters and stores their values
into data arrays within a while loop.

The while condition includes a waitpid()

function set to wait for the application to terminate
without suspending the parent thread execution
(by using the WNOHANG option). Thus, the parent
thread keeps gathering statistical information from
the counters while the application is running.

Based on these statistics, the parent thread
decides whether it is convenient to migrate the
current application thread. When the application
ends, the terminated status for the child specified
by its pid is immediatly available.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 623–645
doi: 10.13053/CyS-28-2-4403

Proactive Load Balancing to Reduce Unnecessary Thread Migrations on Chip Multi-Processor ... 637

ISSN 2007-9737

Fig. 5. Number of thread migrations obtained for both load balancers after 10 runs of each workload

Then, the parent thread leaves the while loop,
stops measuring the runtime, and disables the
counters. The ioctl() function was used to reset,
enable, and disable the counters.

Finally, the parent thread saves the collected
statistics in dedicated files, prints them on the
screen, and exits. See points E-G. Next, we
present our proactive load-balancing algorithm split
into two parts: Algorithm 3 and Algorithm 4.

6.2 Detailed Description

Our PLB algorithm requires a tight synchronization
between the parent, child and application threads
as exposed so far. Algorithm 3 details the
synchronization between these threads as well as
the first part of the while loop depicted above.

In lines 4 – 8, the parent thread spawns a child
thread through the fork() function and checks if
the returned pid has a valid value.

At this point a branch occurs: in line 9, the
child begins executing the preparatory steps prior
to launching the application thread, and in line 14,
the parent thread waits for the child to finish.

In line 10, just after the child thread has
completed these steps, it sends a null message to
the parent by closing one end of pipe 1. In line 11,
the child waits for the parent thread to carry out the
counters’ setup.

Then, in lines 15 – 18, the counters are setup,
reset and enabled by the parent thread, whereupon
it begins measuring the runtime parameter. In
line 19, the parent sends a null message to the
child by closing one end of pipe 2, so in line 12,
the child launches the application by means of the
execvp() function.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 623–645
doi: 10.13053/CyS-28-2-4403

Ulises Revilla-Duarte, Marco A. Ramírez-Salinas, Luis A. Villa-Vargas, et al.638

ISSN 2007-9737

Table 4. Percentage of reduction in the number of thread
migrations for each workload

Thread Migrations
Workload Benchmarks (threads)

W1
gzip gcc mcf

278 136 51.1% 54 21 61.1% 348 181 47.8%

W2
bzip2 gcc mcf

247 137 44.5% 59 39 35.4% 372 181 51.4%

W3
eon gcc mcf

112 62 44.6% 45 25 44.4% 317 240 24.3%

W4
crafty gcc mcf

413 230 51.6% 42 26 38.1% 363 137 62.2%

W15
eon gzip mcf

134 94 29.9% 248 150 39.5% 328 146 55.5%

W16
bzip2 gzip mcf

244 69 71.7% 272 82 69.8% 352 109 69.0%

W17
crafty gzip mcf

252 228 9.5% 223 103 53.8% 268 146 45.1%

W18
eon bzip2 mcf

126 78 38.1% 217 123 43.3% 348 201 42.2%

W19
crafty bzip2 mcf

408 265 35.0% 232 105 54.7% 398 217 45.5%

W20
crafty eon mcf

279 317 -13.6% 282 224 20.6% 93 58 37.6%

As mentioned earlier, the child performs a
couple of preparatory steps prior to launching the
application thread which consist in:

1. First calling a dummy execvp() that always fails
in order to avoid Global Offset Table (GOT) and
Procedure Linking Table (PLT) entry relocation
overhead on the real execvp() [19, 27].

These processor-specific tables assist the
dynamic linker in finding the absolute addresses
for position-independent function calls, such
as execvp(). Therefore, as all this action
is performed in advance, to launch the real
execvp() takes much fewer steps.

2. Setting the close-on-exec flag (FD CLOEXEC)
associated with the file descriptor representing
the open end of pipe 2, so this end will be
automatically (and atomically) closed when the
execvp() succeeds (since execvp() does not
return when successful).

On the other hand, in line 20, the control
variable k that is used to indicate the number of
times the algorithm enters into the while loop is
initialized to 0. In line 21, the waitpid() function is
configured using the WNOHANG option along with the

child’s pid in order not to suspend the execution of
the parent thread while the application is running.
In lines 22 – 26, the while condition is set and
the counts of the events represented by their
corresponding file descriptors (Table 2) are stored
into dedicated array variables. In lines 27 – 38, the
IPC is calculated from the instructions retired and
unhalted core cycles statistics for both the core0
and core1 at runtime.

The decimal part of the IPC values thus
obtained is truncated to its hundredth part; this in
order to make them more meaningful. Algorithm 4
presents the second part of the while loop which
contains the reasoning for deciding to migrate the
application threads (i.e., the decision-making part).

In lines 39 – 49, for the first pass inside
the while loop, the IPC values that have
been previously calculated are assigned to
IPC-threshold variables (refval1 and refval2). If
it is a subsequent pass, it checks whether
the IPC-threshold values are lower than the
corresponding new IPC values for core0 and core1.

If so, the new IPC values are assigned to the
IPC-threshold variables (i.e., runtime-updated IPC
thresholds are used). On the other hand, in lines
51 – 62, if the new IPC values are lower than the
IPC-threshold values, it means that a significant
contention exists between the co-runner threads.

So the current IPC-threshold values are
maintained. In line 51, the IPC value of
the thread running on core0 (ipcval1) is
checked, if it is lower than its corresponding
IPC-threshold value (refval1), the thread
is migrated to core1 by means of our
sched setmigration newmask() algorithm.

Similarly, in line 57, the IPC value of the
thread running on core1 (ipcval2) is checked, if
it is lower than its corresponding IPC-threshold
value (refval2), the thread is migrated to core015.
Therefore, as soon as a significant decrease in the
thread’s IPC is observed at runtime, our algorithm
reacts proactively trying to keep this parameter to
its previous higher value by migrating the thread
and thus avoiding contention for shared resources
with its co-runners.
15This is completely in line with our proposed thread migration

model. For a system with a larger number of cores, our model
would simply have more choices of cores to migrate to.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 623–645
doi: 10.13053/CyS-28-2-4403

Proactive Load Balancing to Reduce Unnecessary Thread Migrations on Chip Multi-Processor ... 639

ISSN 2007-9737

Fig. 6. Average IPC obtained for both load balancers after 10 runs of each workload

As previously stated, the optimal couples of
co-runner threads are searched in this way at
runtime. The mf1 and mf2 variables are used to
ensure that a thread cannot be migrated to the
same core where it is currently running. In line 63,
the control variable k is incremented by 1 for each
pass through the while loop.

Finally, when the application terminates,
the while condition is no longer met, so in
lines 65 – 68, the parent thread stops measuring
the runtime parameter, disables the counters,
reads the final values of the statistics, and prints
these final values along with those previously
obtained during the execution of the application.

7 Evaluation Experiments

This section details the steps performed to
evaluate our proactive load-balancing algorithm:
First, workload implementations of CINT speccpu

2000 benchmarks [36] which simulate application
threads are carried out. Three-benchmark
workloads that have adequate stress capacity for
the example multi-core system used (Table 1) are
employed. Second, perf event is used to configure
the PMU built into each processor core in order to
collect the instructions retired and unhalted core
cycles hardware events from which we calculate
the Instructions Per Cycle (IPC) statistic.

As explained in earlier sections, IPC is the
primary metric we employed to manage the
migration of process threads. Although there
are several other events collectable such as L2
cache misses, rejected L2 cache requests (by
the bus queue), completed memory transactions
on the system bus, and so on, IPC is a good
performance metric to keep simplicity in our
conception. The PMU is also configured to collect
the cpu-migrations software event at the same time
(as described in Section 3).

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 623–645
doi: 10.13053/CyS-28-2-4403

Ulises Revilla-Duarte, Marco A. Ramírez-Salinas, Luis A. Villa-Vargas, et al.640

ISSN 2007-9737

Third, as mentioned in Section 2, we developed
a workload-launcher tool in order to synchronously
launch the implemented workloads on the CMP
system. The workload-launcher picks the different
bechmarks that make up a workload and launches
them simultaneously to execution. As soon as a
workload finishes, the benchmarks that compose
the next workload are launched. When the last
workload is executed, the workload-launcher starts
over by executing each workload again in a second
round. It stops after 10 rounds are completed (i.e.,
each workload is run 10 times). As discussed
earlier, 10 workloads were selected from the 20
that we had previously characterized to stress the
CMP system used.

Fourth, in the manner described in the previous
step, each of the selected workloads is run 10
times on Linux without modifying the scheduler,
and the number of instructions retired, unhalted
core cycles and thread migrations are counted
at runtime. Fifth, our PLB algorithm is then
merged into the Linux scheduler and each of these
workloads is run 10 times again. The same events
are counted at runtime. Finally, the statistics values
obtained are plotted on a bar graph and analyzed.
This bar graph is shown in Fig.5.

8 Results

The number of thread migrations obtained after
running each workload 10 times on the example
CMP system with the Linux OS installed, first with
the vanilla (standar) kernel and then with the PLB
algorithm merged into the Linux kernel scheduler is
plotted in the bar graph in Fig. 5, which also shows
the benchmarks that make up each workload.
From this figure it can be seen that the number of
migrations performed is significantly reduced when
using proactive load balancing.

Table 4 shows in detail the percentage by
which the number of migrations decreased for
each constituent benchmark (mimicking a software
thread) of the workloads used. In this table, below
each benchmark, there are three small boxes. In
the first box, we have the resulting number of
thread migrations for the vanilla Linux scheduler,
in the second, the corresponding number for our
proactive load-balancing algorithm, and in the third,

the percentage by which the migrations decreased.
Our PLB algorithm reduces the number of thread
migrations by up to 71.7% (bzip2 in W16). There
is only one case (crafty in W20) where there is a
13.6% increase. For this particular combination of
benchmarks that make up W20, both eon and mcf

contend, one at a time, against crafty for shared
resources with great intensity.

Therefore, our algorithm is forced to migrate
crafty quite often. For these workloads, we also
compared the average IPC obtained for both the
vanilla and modified scheduler instances. The
resulting numbers for proactive load balancing
are practically the same as those of the vanilla
instance. This is exposed in the bar graph in
Fig.6. From Table 4, we obtain the total number of
migrations for both the vanilla scheduler (MT) and
proactive load balancing (mT): Vanilla scheduler:

MT =

30∑
i=1

Mi = 7354. (1)

Proactive load balancing:

mT =

30∑
i=1

mi = 4130. (2)

Thus, the total reduction in the number of
migrations (Tr) is:

Tr = MT −mT = 7354− 4130 = 3224. (3)

That is, in total there were 3224
fewer migrations.

Therefore, on average the percentage by which
the number of migrations was reduced (Ar) is:

Ar =

(
3224

7354
× 100

)
% = 43.8%. (4)

Without degradation of performance.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 623–645
doi: 10.13053/CyS-28-2-4403

Proactive Load Balancing to Reduce Unnecessary Thread Migrations on Chip Multi-Processor ... 641

ISSN 2007-9737

9 Conclusion and Future Work

We have presented our proactive load-balancing
(PLB) algorithm designed to avoid performance
drop in CMP systems due both to an excessive
number of thread migrations and shared resource
contention. Our PLB algorithm proactively decides
whether a running thread must be migrated from
its current core to another active core based on
performance data read at runtime from system
counters (PMU) that we configured to collect
counts of selected events.

While the software threads are running
concurrently (co-running threads) on a CMP
processor, the Instructions Retired and Elapsed
Cycles events are collected and used to obtain
the IPC parameter which shows the system
performance. In the same way, the cpu-migrations
event is also gathered to know the number of
migrations performed on each thread.

According to the literature, shared resource
contention by co-running threads is the most
important cause of performance drop. Hence, our
PLB algorithm is primarily designed to proactively
avoid resource contention. On the example CMP
machine, our algorithm maintains two different
threads from each workload running concurrently
as long as it results in the least shared resource
contention, and therefore, to the same extent,
thread migration is reduced.

Our PLB algorithm avails itself of the Linux
kernel’s perf event subsystem to configure each
core’s PMU, read event counts and monitor
software threads. The perf event subsystem
represents an easy access to hardware counters
to Linux, which are a key resource for improving
system performance. Unfortunately, there is a
lack of literature and limited online documentation
available for this monitoring tool.

Therefore, an important aspect of our research
work is that we have excelled at dredging up most
of the vague and obscure configuration facts, and
thus shedding light on how to use and set up
perf-event; namely, how to set it up in order to
count different events simultaneously at runtime.
We have introduced a comprehensive view of
the methodology used for conducting research
to adapt an operating system such as Linux to

the modern multi-core architectures, which is a
theme of great relevance and interest among
computer scientists today. Overall, our results have
shown that the number of migrations performed
on the threads (benchmarks) that make up the
workloads used is significantly reduced (by 43.8%
on average) without harming system performance
when our proposed PLB algorithm is utilized. To
design A.I. algorithms that can be merged into
Linux to perform smart scheduling of co-running
threads in multi-core architectures so that system
performance improves is an interesting avenue for
future work.

Acknowledgments

We thank Instituto Politécnico Nacional (IPN) for
funding this work through the projects:

– SIP20231335: Open Technologies for the
Development of SoCs based on the Lagarto-I
RISC-V Processor and Linux OS for Academia
and Research.

– SIP20231075: Lagarto SBC: Computer on
module based on the Lagarto processor.

Ulises Revilla-Duarte thanks Consejo Nacional
de Ciencia y Tecnologı́a de México (CONACYT)
for the Ph.D. Scholarship granted and IPN for the
facilities provided to carry out this research work.

References

1. Arpaci-Dusseau, R. H., Arpaci-Dusseau,
A. C. (2018). Operating systems: Three
easy pieces. Chapter 10: Multiprocessor
Scheduling, CreateSpace Independ-ent
Publishing Platform, pp. 103–112.

2. Blagodurov, S., Fedorova, A. (2011).
User-level scheduling on NUMA multicore
systems under linux. Proceedings of the Linux
Symposium, pp. 81–92.

3. Bovet, D. P., Cesati, M. (2005).
Understanding the Linux kernel. O’Reilly.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 623–645
doi: 10.13053/CyS-28-2-4403

Ulises Revilla-Duarte, Marco A. Ramírez-Salinas, Luis A. Villa-Vargas, et al.642

ISSN 2007-9737

4. Brandolese, C., Fornaciari, W., Salice, F.,
Sciuto, D. (2002). The impact of source code
transformations on software power and energy
consumption. Journal of Circuits, Systems and
Computers, Vol. 11, No. 5, pp. 477–502.
DOI: 10.1142/s0218126602000586.

5. Broquedis, F., Clet-Ortega, J., Moreaud,
S., Furmento, N., Goglin, B., Mercier, G.,
Thibault, S., Namyst, R. (2010). hwloc: A
generic framework for managing hardware
affinities in HPC applications. Proceedings of
the 18th Euromicro International Conference
on Paralel, Distributed and Network-based
Processing, pp. 180–186. DOI: 10.1109/pdp.
2010.67.

6. Chandra, D., Guo, F., Kim, S., Solhin,
Y. (2005). Predicting inter-thread cache
contention on a chip multi-processor
architecture. Proceedings of the
11th International Symposium on
High-Performance Computer Architecture,
pp. 340–351. DOI: 10.1109/HPCA.2005.27.

7. Clarkdale (2007). Clarkdale microprocessor.

8. Constantinou, T., Sazeides, Y., Michaud, P.,
Fetis, D., Seznec, A. (2005). Performance
implications of single thread migration on a
chip multi-core. ACM SIGARCH Computer
Architecture News, Vol. 33, No. 4, pp. 80–91.
DOI: 10.1145/1105734.1105745.

9. Corporation, N. D. (2019). Tomoyo linux. to
moyo.sourceforge.net.

10. Eranian, S., Gourion, E., Moseley, T., Bruijn,
W. (2015). Linux kernel profiling with perf. perf
.wiki.kernel.org/index.php/Tutorial.

11. Garcia-Garcia, A., Saez, J. C., Prieto-Matias,
M. (2018). Contention-aware fair scheduling
for asymmetric single-isa multicore systems.
IEEE Transactions on Computers, Vol. 67,
No. 12, pp. 1703–1719. DOI: 10.1109/tc.201
8.2836418.

12. Goglin, B. (2017). On the overhead
of topology discovery for locality-aware
scheduling in HPC. Proceedings
of the 25th Euromicro International

Conference on Paralel, Distributed and
Network-based Processing, pp. 186–190.
DOI: 10.1109/pdp.2017.35.

13. Gouicem, R. (2020). Thread scheduling
in multi-core operating systems: How to
understand, improve and fix your scheduler.
Ph.D. thesis, Sorbonne Université, France.

14. Harris, J. A., Cordani, J. (2002). Schaum’s
outline of operating systems. Chapter
2: Process Management, McGraw-Hill,
pp. 14–23.

15. Herdrich, A., Illikkal, R., Iyer, R.,
Newell, D., Chadha, V., Moses, J.
(2009). Rate-based QoS techniques for
cache/memory in CMP platforms. Proceedings
of the 23th International Conference
on Supercomputing, pp. 479–488.
DOI: 10.1145/1542275.1542342.

16. Intel (2007). Intel®core™2 duo processor
e6550. https://ark.intel.com/content/www/us
/en/ark/products/30783/intel-core-2-duo-pro
cessor-e6550-4m-cache-2-33-ghz-1333-mhz
-fsb.html.

17. Intel (2011). Intel®64 and IA-32 architectures
software developer manuals. https://www.intel.
com/content/www/us/en/developer/articles/tec
hnical/intel-sdm.html.

18. John, O. (2001). Operating systems with
linux. Chapter 3: Process Manager, Palgrave,
pp. 39–67.

19. Jones, M. (2008). Anatomy of linux dynamic
libraries. developer.ibm.com/tutorials/l-dynam
ic-libraries/.

20. Jung, J., Shin, J., Hong, J., Lee, J., Kuo,
T. W. (2017). A fair scheduling algorithm
for multiprocessor systems using a task
satisfaction index. Proceedings of the
International Conference on Research
in Adaptive and Convergent Systems,
pp. 269–274. DOI: 10.1145/3129676.31
29736.

21. Lim, G., Min, C. W., Eom, I. Y.
(2012). Load-balancing for improving
user responsiveness on multicore

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 623–645
doi: 10.13053/CyS-28-2-4403

Proactive Load Balancing to Reduce Unnecessary Thread Migrations on Chip Multi-Processor ... 643

ISSN 2007-9737

embedded systems. Proceedings of
the Linux Symposium, pp. 25–34.
DOI: 10.48550/arXiv.2101.09359.

22. Lozi, J. P., Lepers, B., Funston, J.,
Gaud, F., Fedorova, A., Quéma, V.
(2016). The linux scheduler: A decade
of wasted cores. Proceedings of the
Eleventh European Conference on
Computer Systems (EuroSys’16), pp. 1–16.
DOI: 10.1145/2901318.2901326.

23. Lozi, J. P., Lepers, B., Funston, J., Gaud, F.,
Fedorova, A., Quéma, V. (2016). Your cores
are slacking off–or why os scheduling is a hard
problem. USENIX Association, Vol. 41, No. 4,
pp. 6–13.

24. Marinakis, T., Haritatos, A. H., Nikas, K.,
Goumas, G. I., Anagnostopoulos, I. (2017).
An efficient and fair scheduling policy for
multiprocessor platforms. pp. 1–4. DOI: 10.1
109/ISCAS.2017.8050758.

25. Mosberger, D., Eranian, S. (2002). IA-64 linux
kernel: Design and implementation. Prentice
Hall.

26. Oprofile (2013). Oprofile - a system profiler for
linux. oprofile.sourceforge.io.

27. Oracle (2008). Linkers and library guide. docs
.oracle.com/cd/E23824 01/html/819-0690/toc.
html.

28. Pathania, A., Venkataramani, V., Shafique,
M., Mitra, T., Henkel, J. (2016). Distributed fair
scheduling for many-cores. pp. 379–384.

29. Permon2 (2013). perfmon2 - improving
performance monitoring on linux.
perfmon2.sourceforge.net.

30. Sáez, J. C., Gómez, J. I., Prieto, M.
(2008). Improving priority enforcement via
non-work-conserving scheduling. Proceedings
of the 37th International Conference on
Parallel Processing, pp. 99–106. DOI: 10.110
9/ICPP.2008.38.

31. Salzberg-Rodriguez, C., Fischer, G.,
Smolski, S. (2005). The Linux®kernel primer:
A top-down approach for x86 and powerpc

architectures. Chapter 3: Processes: The
Principal Model of Execution, Prentice Hall,
pp. 77–178.

32. Shi, Q., Chen, T., Hu, W., Huang, C.
(2009). Load balance scheduling algorithm
for CMP architecture. Proceedings of the
International Conference on Electronic
Computer Technology, pp. 396–400.
DOI: 10.1109/icect.2009.74.

33. Siddha, S., Pallipadi, V., Mallick, A.
(2005). Chip multiprocessing aware linux
kernel scheduler. Proceedings of the Linux
Symposium, pp. 193–204.

34. Silberschatz, A., Baer-Galvin, P., Gagne, G.
(2007). Operating system concepts with java.
John Wiley and Sons.

35. Silberschatz, A., Baer-Galvin, P., Gagne, G.
(2018). Operating system concepts. Chapter
5: CPU Scheduling, John Wiley and Sons,
pp. 220–227.

36. SPEC (2007). Standard performance
evaluation corporation. www.spec.org.

37. Tanenbaum, A. S., Herbert, B. (2015).
Modern operating systems. Chapter
8: Multiple Processor Systems, Person
Education, pp. 520–539.

38. Tiwari, V., Malik, S., Wolfe, A., Lee, M.
T. C. (1996). Instruction level power analysis
and optimization of software. Proceedings of
9th International Conference on VLSI Design,
pp. 1–18. DOI: 10.1109/icvd.1996.489624.

39. Vogl, S., Eckert, C. (2012). Using hardware
performance events for instruction-level
monitoring on the x86. Proceedings of
EuroSec’12, 5th European Workshop on
System Security.

40. Weaver, V. (2013). Linux perf event features
and overhead. FastPath: Second International
Workshop on Performance Analisys of
Workload Optimized Systems, pp. 1–6.

41. Weaver, V. (2013). perf event – programming
guide. web.eece.maine.edu/∼vweaver/project
s/perf events/programming.html.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 623–645
doi: 10.13053/CyS-28-2-4403

Ulises Revilla-Duarte, Marco A. Ramírez-Salinas, Luis A. Villa-Vargas, et al.644

ISSN 2007-9737

42. Wolfgang, M. (2008). Professional
Linux®kernel architecture. Wiley Publishing.

43. Zhang, X., Zhong, R., Dwarkadas, S.,
Shen, K. (2012). A flexible framework for
throttling-enabled multicore managment.
Proceedings of the 41st International
Conference on Parallel Processing,
pp. 389–398.

44. Zhuravlev, S., Blagodurov, S., Fedorova,
A. (2010). Addressing shared resource

contention in multicore processors via
scheduling. ACM SIGARCH Computer
Architecture News, Vol. 38, No. 1,
pp. 129–142. DOI: 10.1145/1735970.17
36036.

Article received on 25/11/2022; accepted on 12/06/2024.
∗Corresponding author is Marco A. Ramı́rez-Salinas.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 623–645
doi: 10.13053/CyS-28-2-4403

Proactive Load Balancing to Reduce Unnecessary Thread Migrations on Chip Multi-Processor ... 645

ISSN 2007-9737

