
Deep Learning-Based Text Classification
to Improve Web Service Discovery

Hadj Madani Meghazi1,2,3,∗ , Sid Ahmed Mostefaoui1,2, Moustafa Maaskri1,2, Youcef Aklouf3

1 University of Tiaret, Tiaret,
Algeria

2 University of Tiaret, Laboratory of Research in Artificial Intelligence and Systems,
Algeria

3 University of Science and Technology Houari Boumediene,
Algiers

{h.meghazi, s mostefaoui, moustafa.maaskri}@univ-tiaret.dz, yaklouf@usthb.dz

Abstract. Due to the rising number of firms and
organizations offering access to their business data or
resources on the internet through APIs, there has been
a significant increase in the number of web APIs. This
poses a difficulty in swiftly and effectively finding online
APIs. In order to tackle this problem, the introduction
of service classification has been implemented to
streamline the process of finding services within a vast
array of options. Prior approaches have endeavored to
classify web services based on semantic characteristics,
although their precision has been constrained. This work
introduces a novel strategy named “DeepLAB-WSC” to
improve the identification of web services. The approach
specifically emphasizes actions derived from textual
descriptions of web services and utilizes advanced
techniques from deep learning-based text classification.
The suggested methodology was evaluated using a
real-world web API dataset and achieved superior
results compared to existing state-of-the-art research.

Keywords. Service classification, action extraction, text
classification, deep learning, web services discovery.

1 Introduction

Service-Oriented-Architecture (SOA) and its
primary implementation technology, Web Services
(WS), have revolutionized the process of designing
and developing corporate applications for software

suppliers. Functioning as fundamental units that
can transmit and modify data, they interconnect
to generate novel composite value-enhanced
services that may be accessed as needed.

The most crucial step of the Web services’
consumption cycle was and remains service
discovery. This is because of their sheer number,
which grows exponentially, as well as the fact
that better services or mashups will be produced
if we can make a good discovery. Research
on this subject can be grouped into three (03)
categories: syntactic, semantic, and social. The
first one covers syntactic techniques for measuring
the degree of services similarity that is mostly
based on WSDL descriptions, which are published
in and processed, word-for-word, by a UDDI
directory [21]. Semantic techniques fall within the
second category. Several formalisms have been
suggested in this context to incorporate a semantic
aspect, starting with the straightforward annotation
of WSDL descriptions (WSDL-S) [1], moving on to
the proposal of a high-level WS ontology (OWL-S)
[14], and finally giving birth to a new conceptual
model (WSMO) [18]. The third category includes
methods that propose a model based on a social
network of web services to intercept and exploit the

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 529–542
doi: 10.13053/CyS-28-2-4556

ISSN 2007-9737

history of their interactions in order to improve their
discovery [13].

To reduce complexity, several studies have
been conducted to address this issue, and
research has demonstrated that Web service
classification/clustering is the optimal approach
for not just the discovery process but also for
recommendation, selection, and composition. [22,
4, 24, 20]. In this work, we will propose an
approach for the classification of web services
that falls under the semantic category but without
resorting to a domain ontology.

This is not specific to our work, but it is
associated with the remarkable success of
Deep Learning methods and applications. More
precisely, word embedding techniques like
Word2Vec [19], Glove [17], or even BERT [3],
which are great ways to capture semantics
without using ontologies. These latter have
considerably slowed down the development of
proposals in the field given the extensive work
involved in developing high-level ontologies,
annotating Web services, and performing related
inference processes.

In Our approach, we started by analyzing the
textual descriptions of web services in order to
extract, with an algorithm, what we will qualify
as service actions. Then, we extended and
exploited a selection of stat-of-art text classifiers
and accentuated their learning with these actions.
Finally, we conducted extensive experiments on
more than 8,400 real-world web services from
ProgrammableWeb1 to evaluate the effectiveness
of our proposal, and we have unequivocally
demonstrated that our suggested technique can
get a higher level of precision in classification and
outperform the most advanced methods currently
available. The subsequent sections of this work are
structured in the following manner.

Section 2 provides a comprehensive review
of relevant research, with a specific emphasis
on the application of Deep Learning methods
for the classification of Web services. Section
3 is specifically devoted to showcasing our
methodology. Section 4 provides a comprehensive
examination and interpretation of the experimental

1www.programmableweb.com

findings. Section 5 serves as the final section of
the report, providing a conclusion and addressing
potential future research.

2 Related Work

The emergence of web APIs has captured the
attention of the academic community and has
witnessed substantial engagement. The main
sources of data for researching Web services
categorization using Deep Learning techniques
are Web services description documents and data
collected from their environment [26].

For instance, in [28] Cao et al. proposed a Wide
and Bi-LSTM model combining all the discrete
features in the description documents of Web
services and performing the breadth prediction of
Web service category to automatically extract the
most pertinent semantic information from a Web
service document.

Then, a Bi-LSTM architecture uses a topical
attention-mechanism to mine the word order and
context information of the words in the Web service
description documents in order to do Web service
classification prediction. In [32], the authors
provide a DeepWSC framework for web service
clustering that is heuristics-based.

In order to cluster web services effectively,
within this method, a signed graph convolutional
network is used to extract service composability
characteristics from service invocation
associations, and an upgraded recurrent
convolutional neural network (RCNN) [10] is
used to extract deep semantic features from
service descriptions.

This is an extension of paper [31], the key
difference is that the new DeepWSC utilizes
the composability characteristics of services,
which are then inputted into the deep neural
network with the deep semantic features of web
services. These features are combined using an
approach to generate integrated implicit properties
of web services.

The paper [26] introduces ServeNet, a
deep neural network that can automatically
extract high-level features from service names
and descriptions without the need for feature
engineering or length restrictions. ServeNet is

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 529–542
doi: 10.13053/CyS-28-2-4556

Hadj Madani Meghazi, Sid Ahmed Mostefaoui, Moustafa Maaskri, et al.530

ISSN 2007-9737

Fig. 1. Overall framework of our DeepLAB-WSC

capable of predicting the classification of services
into 50 different categories.

In their study, Kang et al. [9] utilize the attention
mechanism to combine the local implicit state
vector of a Bidirectional Long Short-Term Memory
Network (BiLSTM) with the global Hierarchical
Dirichlet Process (HDP) topic vector. They propose
a topical attention-based BiLSTM technique for
classifying Web services.

The BiLSTM model is designed for the purpose
of automatically acquiring the keyword feature
representations of Web services. The topic vectors
of Web service documents are acquired using HDP
during offline training.

A topic attention technique is employed to
improve the feature representation by discerning
the significance or weight of different keywords in
Web service documents.

An attention-based BiLSTM model is also
coupled with Information Gain theory to present a
Web service classification in [29]. The suggested
technique focuses on intricate elements inherent in
Web services, such as the significance of various
words and the sequential semantic connections
between words, through the utilization of IG theory
and the attention-based BiLSTM model.

The authors of [23] have developed a
new deep neural network that combines a
Graph-Convolutional-Network (GCN) and a
Bidirectional-Long-Short-Term-Memory (Bi-LSTM)
network. This network aims to automatically
extract function-description-documents by
capturing different relationships in graphs and
exploiting them. The GCN is used to extract global
spatial features, while the Bi-LSTM network learns
sequential features.

Also, Peng et al. [16] present a graph attention
network-based Web services classification
approach. To begin, it capitalizes on description
documents, Web service tags, and the call
relationship between mashups and services to
create a service relationship network based on
Web service composition and shared annotations.
The self-attention mechanism then determines the
attention coefficient of each service node in the
network, and different service nodes in nearby
areas are allocated different weights to classify
Web services. The graph attention network
combines a Web service’s content characteristics
with structure information.

X Yong et al. introduce LDNM [25], a
comprehensive framework for classifying web
services. This framework utilizes a deep

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 529–542
doi: 10.13053/CyS-28-2-4556

Deep Learning-Based Text Classification to Improve Web Service Discovery 531

ISSN 2007-9737

Algorithm 1: Extract Actions
Input: Web service textual description
Output: List of Actions[]

1 function SGET ACTION(Sentence)
2 if (Item is Verb) and (has dobj) then
3 Concatenate the verb with dobj;
4 return as Action;

5 if (Item is Verb) and (has conjuction) then
6 Go to the conjunction item;
7 Once you reach the Noun: concatenate the Verb with the Noun;
8 if this Noun has conjuction then
9 Concatenate also the Verb with the next Noun;

10 return Actions;

11 procedure GET ACTION(Sentence)
12 if (Item is Verb) and (has xcomp) then
13 go to the xcomp node;
14 concatenate the Verb with each action of SGet Action(xcomp);
15 Add all as Actions to the list of Actions[];
16 else
17 Add all Actions of SGet Action(Sentence) to the list of Actions[];

18 for each sentence in Web service textual description do
19 Get Action(Sentence);

fusion technique to combine structured and
unstructured characteristics. The initial step
included transforming each service document into
a feature vector using two different document
representation techniques: topic distribution based
on LDA (Latent Dirichlet Allocation) [2] and
Doc2vec [11], which is a document embedding
model based on neural networks.

Then, using Node2vec [6], they obtained
structured representation vectors extracted from
service invoking and tagging graphs. Finally, they
employ an MLP neural network to fuse these
features and train a service classifier.

The methods we just discussed attempt to
classify web services based on their textual
descriptions or by combining them with other
features. When we looked more closely at
these methods, we discovered that they treat
these descriptions as a collection of words
rather than taking into account and differentiating

Original Tags Stem Tags

(‘Service’, ‘proper noun’) (‘servic’, ‘adjective’)

(‘used’, ‘verb’) (‘use’, ‘adjective’)

(‘validate’, ‘verb’) (‘valid’, ‘adjective’)

between significant words and their placements in
these descriptions.

Furthermore, some techniques simply use the
stems of words, which can distort the meaning.
In this light, we extracted the actions of web
services from their textual descriptions using an
algorithm, which we will describe in more detail in
the following section.

Then, a number of models from the ”Text
Classification” [8, 10, 3, 30, 12] domain
are extended and adjusted to better fit the
classification of these services using these actions
as additional features.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 529–542
doi: 10.13053/CyS-28-2-4556

Hadj Madani Meghazi, Sid Ahmed Mostefaoui, Moustafa Maaskri, et al.532

ISSN 2007-9737

3 The Classification Process of the
Proposed Approach

The process of our approach, which we named
DeepLAB-WSC (Deep Learning Actions Based
Web Service Classification), is illustrated in Figure
1. It consists of four (04) steps.

3.1 Step 1: Pre-processing of Web
Services Descriptions

Web Services are characterized by their capacity to
execute actions and perform tasks. Nevertheless,
in the majority of situations, when it comes to
presenting information about them, we can only
offer a concise written explanation.

In order to effectively identify them using this
method, the key question to ask is: “Which specific
words or phrases in these descriptions accurately
convey the essence of a service?” Initially, we
believed that when we encounter a text, the acts
described within it are inherently represented by
‘verbs’. We began the process by extracting
all possible verbs from web service descriptions
using pre-existing natural language models that
had been trained beforehand.

At this juncture, we encountered two
predicaments: The primary concern is that
these models lack the ability to precisely identify all
verbs. In the statement “Service X searches for all
worldwide airlines that operate in a given country”,
the term ‘searches’ is identified as a noun. If we
isolate each word and disregard its context, what
would happen?

The technique becomes more challenging due
to the loss of start tags for many words throughout
the text cleaning and pre-processing steps,
especially after the Stemming step. Consequently,
verbs are often misidentified as nouns, adjectives,
and so on. Take into account the statement that
follows: The words ‘Service’, ‘used’, and ‘validate’
in the statement “Service X is used to validate
monetary transactions.” are marked as follows:

In most cases, this has the effect of changing
the semantic meaning of each word and, as a
result, the overall meaning of the description.
Because of this, we attempted to overcome
this in our situation from the very beginning of

our approach. That’s why we begin by softly
pre-processing the service descriptions in order
to retain as many words as possible with their
original tags.

3.2 Step 2: Obtain Actions Via Web
Service Descriptions

Another problem we faced was the scarcity of
verbs in the majority of brief descriptions, making
it challenging to utilize these models effectively.
In order to tackle this issue, we employed the
‘Extract-actions’ algorithm at this phase to extract
activities as per our definition where xcomp
denotes an open-clausal-complement and dobj
symbolizes the direct object. The algorithm is
demonstrated in the following examples:

– Case 1:

– Description: Service X annotates text.

– Actions: [annotates text].

– Case 2:

– Description: Service X annotates text and images.

– Actions: [annotates text, annotates images].

– Case 3:

– Description: Service X uses Twitter API to track followers.

– Actions: [utilizes Twitter, utilizes track followers].

3.3 Step 3: Actions and Descriptions
Embedding

Of the five (05) classification models we trained
(see Section 3.3), we used two methods for the
Word embedding process: Glove and BERT.

– GloVe (Global-Vectors for word representation)
[17] is an unsupervised learning method
developed by Stanford University researchers
with the goal of generating Word Embeddings by
aggregating global word co-occurrence matrices
from a given corpus.

We used the variant with a length equal to
100 and trained on 6B tokens including 400K

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 529–542
doi: 10.13053/CyS-28-2-4556

Deep Learning-Based Text Classification to Improve Web Service Discovery 533

ISSN 2007-9737

Fig. 2. WSC2RCNN architecture [7]

vocab. This variant is used on the WSC2RCNN
and TextING-Based [30]classification models.

– BERT(Bidirectional-Encoder-Representations
from Transformers) [3] is a state-of-the-art
language representation model.

It is a huge deep bidirectional encoder-based
transformer model that has been pre-trained on
more than 110 million parameters. BERT is used
as the word embedding model for our BERT and
BERT-GCN based [12] classification models.

3.4 Step 4: Classification based on Services’
Actions and Descriptions Embedding

Our approach’s learning process consists
of training our classifiers using embedding
representations of web service descriptions, then
attempting to accentuate their learning with the
actions extracted in Step 2 and embedded in Step
3. After making a connection between the work
seen in Section 2 and the results obtained by [15]
and [5], the tested models are:

3.4.1 WSC2RCNN

In our previous work [7], we used a Web
Service Classifier with two (02) RCNN deep
neural networks. We gave, pre-trained
GloVe model, representations for both
descriptions and collected actions into a pair
of Recurrent-Convolutional-Neural Networks
(RCNN) that would be trained.

For both networks, we employed the original
version of RCNN [10], which seeks to capture
textual semantics by considering sequence word
order. This approach utilizes both Recurrent
Neural Networks (RNN) to understand the
local context of tokens and Convolutional
Neural Networks (CNN) to capture long-term
dependencies. The left and right contexts of a
word wi, which we determined using the following
equations, were represented by cl(wi) and cr(wi),
respectively, for the first RCNN network:

cl(wi) = f(W (l)cl(wi−1) +W (sl)e(wi−1)), (1)

cr(wi) = f(W (r)cr(wi+1) +W (sr)e(wi+1)), (2)

where the activation function f is non-linear. A
word’s word embedding vector is represented by
e(w). The context is transformed into the following
hidden layer using a matrix called W (l). W (sl) is a

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 529–542
doi: 10.13053/CyS-28-2-4556

Hadj Madani Meghazi, Sid Ahmed Mostefaoui, Moustafa Maaskri, et al.534

ISSN 2007-9737

Fig. 3. TextING architecture [30]

matrix that links the semantic of the present word
to the left context of the word that comes after it.

Equation (3) is used to obtain the latent
semantic representation of the yi vector:

yi = tanh(Wxi + b), (3)

where a word wi is represented by xi:

xi = [cl(wi); e(wi); cr(wi)]. (4)

A similar calculation is made for ya (of actions)
for the second network, but it is applied to the
words of the extracted actions. The 20 key
categories of high-quality Web services from the
dataset are linked to the outputs of both RCNN
networks, which are goals of WSC2RCNN. The

final output is then prepared by summing the
outputs from the two RCNN networks.

A softmax activation layer is used to normalize
the final output, M output, because we have
a multi-class issue. We present our model
in Figure 2.

3.4.2 TextING Classifier

We conducted experiments on WS descriptions
using TextING. The authors of [30] provide a
novel graph neural network for text categorization.
In this network, each document is treated as a
separate graph, allowing for the learning of word
interactions at the text level. In this process,
distinct graphs are generated for each text, and

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 529–542
doi: 10.13053/CyS-28-2-4556

Deep Learning-Based Text Classification to Improve Web Service Discovery 535

ISSN 2007-9737

Fig. 4. BERT classifier

subsequently, Graph Neural Networks (GNN) are
employed to acquire detailed word representations
by considering their local structures. Additionally,
GNN has the capability to produce embeddings for
words that have not been seen before in the new
document. Ultimately, the word nodes are included
into the document embedding.

3.4.3 BERT Classifier

A fine tuned BERT is used and a number of
layers are added to elaborate a BERT Web Service
classifier, shown in figure 4. The model used is
bert-base-uncased, which consists of 12 layers,

768 hidden units, 12 attention heads, and a total
of 110 million parameters, and a softmax activation
layer to normalize the final output.

3.4.4 BERT With Actions Classifier

We made multiple attempts to incorporate the
extracted actions efficiently while trying to increase
the performance of the “BERT Classifier” and
validate our approach. The solution found consists
of concatenating the sentences of the web service
descriptions with the actions repeated “Rep” times

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 529–542
doi: 10.13053/CyS-28-2-4556

Hadj Madani Meghazi, Sid Ahmed Mostefaoui, Moustafa Maaskri, et al.536

ISSN 2007-9737

Fig. 5. BERT + Actions classifier

while not exceeding the BERT variant’s maximum
sequence length (See figure 5):

InputBERT with Actions =

WS Description + WS Actions × Rep.
(5)

3.4.5 Classifiers based on BERT-GCN

We also put Yuxiao Lin et al.’s proposition
(BERT-GCN) to the test. In [12], BERT with his
large-scale pretraining, and GCN [27] with his
transductive learning, are trained together.

First, a graph with both word nodes and
document nodes is built. The weight of an edge
that connects two nodes i and j is defined in the
following manner:

Ai,j =

PPMI(i, j), i, j are words and i ̸= j,
TF− IDF(i, j), i is a document, j is a word,
1, i = j,
0, otherwise.

(6)

The word-document edges and word-word
edges are determined using the term
frequency-inverse document frequency (TF-IDF)

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 529–542
doi: 10.13053/CyS-28-2-4556

Deep Learning-Based Text Classification to Improve Web Service Discovery 537

ISSN 2007-9737

Table 1. The allocation of Web services across selected categories

ID Primary Cat # of services ID Primary Cat # of services

0 Tools 887 10 Telephony 342

1 Financial 757 11 Security 312

2 Messaging 591 12 Reference 304

3 eCommerce 553 13 Email 299

4 Payments 553 14 Search 290

5 Social 510 15 Travel 294

6 Enterprise 509 16 Video 281

7 Mapping 429 17 Education 277

8 Government 371 18 Advertising 274

9 Science 357 19 Transportation 269

and positive point-wise mutual information (PPMI)
measures, respectively.

Then, the GCN layers iteratively update
document nodes after initializing them using
BERT-style embeddings, and the main training aim
is to do linear interpolation between the BertGCN
prediction and the BERT prediction. This may be
expressed as:

Z = λZGCN + (1− λ)ZBERT, (7)

where λ regulates the tradeoff between the two
models. The same process of 3.4.4 is applied
to BERT GCN With Actions Classifier in terms of
the integration of actions while respecting the
maximum length imposed by BERT used variant.

4 Experiments

4.1 Used Evaluation Metrics

The evaluation of selected models has
been conducted using four widely used
evaluation measures: Purity, NMI, Recall, and
F1-measure. Purity is a metric used for guided
cluster validation. It is calculated using the
following formula:

Purity(Ω, C) =
1

N

k∑
i=1

max
j

|ωi ∩ cj | , (8)

where Ω = {w1, w2, ..., wK} represents the
collection of clusters of web services, whereas
C = {c1, c2, ..., cJ} represents the collection of
classes of web services. NMI is a metric that relies
on mutual information and is precisely defined as:

NMI(Ω, C) =
2× I(Ω; C)
H(Ω) +H(C)

, (9)

where can we obtain the mutual information I using:

I(Ω; C) =
k∑

i=1

k∑
j=1

P (ωi ∩ cj) log
P (ωi ∩ cj)

P (ωi) ∩ P (cj)
. (10)

And the entropy H using:

H(Ω) = −
k∑

i=1

P (ωi) logP (ωi). (11)

Recall is a metric used to determine the
accuracy of predicting the real class by measuring
the proportion of properly predicted instances. It is
computed as follows:

Recall =
TP

TP + FN
, (12)

where TP represents the count of services
properly allocated to their respective class, and FN
represents the count of services where the model
wrongly forecasts their positive class as negative.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 529–542
doi: 10.13053/CyS-28-2-4556

Hadj Madani Meghazi, Sid Ahmed Mostefaoui, Moustafa Maaskri, et al.538

ISSN 2007-9737

Table 2. The classification performance of tested methods

Models Purity NMI Recall F1-Score

DeepWSC 0.5708 0.4856 0.3821 0.3969

DeepWSC + Heuristics 0.6379 0.5273 0.4186 0.4356

RCNN* 0.6438 0.5704 0.6438 0.6247

WSC2RCNN 0.6595 0.5795 0.6588 0.6512

TextING 0.6887 0.5986 0.6864 0.6714

BERT 0.7746 0.6924 0.7746 0.7712

BERT + Actions 0.7785 0.6931 0.7786 0.7759

BERT-GCN 0.7788 0.6935 0.7788 0.7717

BERT-GCN + Actions 0.7810 0.6972 0.7811 0.7745

The last used measure is F1 which is calculated
using the next formulas:

Precision =
TP

TP + FP
. (13)

The term “FP” represents the count of APIs
where the model wrongly forecasts their negative
classes as positive:

F1-measure =
2× Precision×Recall

Precision+Recall
. (14)

4.2 Experimental Environment

We performed tests to assess and showcase the
efficiency of our methodology. All experiments
were executed on a platform equipped with an Intel
(R) Xeon (R) platinum 8259CL CPU@2.50GHz (32
cores) and 256GB RAM.

Utilizing the Dataset2 of [31, 32] from
ProgrammableWeb, the leading online registry
for Web services with a vast collection of over
23,000 APIs, we accessed a compilation of 17,923
authentic web services that were obtained by web
crawling. The experimental data comprises 8,459
high-quality WS from the top 20 classes (refer
to Figure 1).

2github.com/aourhtnowvherlcaer/programmableWeb

4.3 Experimental Results and Discussions

We compared our results to those of [31, 32]
in order to correctly interpret them. Table 2
summarizes all of the results obtained by the
various studied methods. We started by putting
in tests for RCNN, TextING 3.4.2, BERT 3.4.3,
and BERT-GCN 3.4.5 classifiers. The results
were satisfactory, starting with the RCNN classifier,
which alone exceeded those of [32] on all metrics.

This is because the authors of [31] wanted to
get closer to the semantics of WS descriptions by
trying to capture the context of each word with an
RCNN deep neural network. However, by applying
strict stemming, the meaning of many words is lost
(See Section 3.1).

This is what we could observe in their
pre-processed dataset. This issue has been fixed
and the results of our RCNN classifier exceeded
the best of [32]’s by an average of 26.57% on all
the evaluation metrics.

The first tested method of the GNN class
(TextING) achieves an average improvement of
34.89%. On [32], BERT and BERT-GCN
had average advantages of 53.7% and 54.2%,
respectively. To complete the evaluation of our
approach’s effectiveness, each of the proposed
classifiers has gone through an extra training
process in which we have attempted to include
the actions retrieved by our “Extract-Actions”
algorithm (See Section 3.2).

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 529–542
doi: 10.13053/CyS-28-2-4556

Deep Learning-Based Text Classification to Improve Web Service Discovery 539

ISSN 2007-9737

The results have demonstrated that the
classifiers’ performance improves each time these
actions are combined. Our WSC2RCNN Classifier
outperforms our RCNN and presents an average
advantage of 5.51% across all the evaluation
metrics. Furthermore, our BERT+Actions classifier
achieves an average advantage of 0.43% over the
BERT classifier. Ending with BERT-GCN+Actions,
which outperforms all classifiers seen in this work
and shows a 0.37% improvement over BERT-GCN.

5 Conclusion and Future Research

This work introduces a novel method for classifying
web services, named DeepLAB-WSC, that relies
on the concise textual descriptions of the services.
Our methodology stands out by prioritizing the
activities executed by web services, which are
derived from their descriptions, and use deep
learning text classification techniques to categorize
the services.

Our comparison trials have demonstrated that
DeepLAB-WSC surpasses current cutting-edge
techniques for classifying web services in terms
of all performance parameters. Our technique
has a key benefit in that it specifically targets
the most crucial aspect of the description,
namely the actions, in order to enhance the
accuracy of categorization.

Looking ahead, we plan to extend this work
by leveraging the power of BERT and GNN to
build social networks of web services based
on the similarities (BERT based classifiers)
and complementarities (predicting the next
sentence/document) of their descriptions. Making
this social dimension profitable will allow usto
enhance both the process of finding and combining
online services.

References

1. Akkiraju, R., Farrell, J., Miller, J. A.,
Nagarajan, M., Sheth, A. P., Verma, K.
(2005). Web service semantics - WSDL-S.
www.w3.org/submissions/WSDL-S/.

2. Blei, D. M., Ng, A. Y., Jordan, M. I.
(2003). Latent dirichlet allocation. The Journal
of Machine Learning Research, Vol. 3,
pp. 993–1022.

3. Devlin, J., Chang, M. W., Lee, K.,
Toutanova, K. (2019). BERT: Pre-training
of deep bidirectional transformers for
language understanding. Proceedings of
the Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologie,
pp. 4171–4186. DOI: 10.18653/v1/n19-1423.

4. Elgazzar, K., Hassan, A. E., Martin,
P. (2010). Clustering WSDL documents to
bootstrap the discovery of web services. IEEE
International Conference on Web Services,
pp. 147–154. DOI: 10.1109/icws.2010.31.

5. Gasparetto, A., Marcuzzo, M., Zangari,
A., Albarelli, A. (2022). A survey on
text classification algorithms: From text to
predictions. Information, Vol. 13, No. 2, pp. 83.
DOI: 10.3390/info13020083.

6. Grover, A., Leskovec, J. (2016).
node2vec: Scalable feature learning
for networks. Proceedings of the
22nd ACM Special Interest Group on
Knowledge Discovery and Data Mining
and International Conference on Knowledge
Discovery and Data Mining, pp. 855–864.
DOI: 10.1145/2939672.2939754.

7. Hadj-Madani, M., Youcef, A. (2022).
WSC2RCNN: A deep learning actions-based
classifier for improved web service discovery.
Computación y Sistemas, Vol. 26, No. 4.
DOI: 10.13053/cys-26-4-4069.

8. Joachims, T. (1998). Text categorization
with support vector machines: Learning with
many relevant features. Proceedings of the
European Conference on Machine Learning,
pp. 137–142. DOI: 10.1007/bfb0026683.

9. Kang, G., Xiao, Y., Liu, J., Cao, Y.,
Cao, B., Zhang, X., Ding, L. (2021).
Tatt-BiLSTM: Web service classification with
topical attention-based BiLSTM. Concurrency

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 529–542
doi: 10.13053/CyS-28-2-4556

Hadj Madani Meghazi, Sid Ahmed Mostefaoui, Moustafa Maaskri, et al.540

ISSN 2007-9737

and Computation: Practice and Experience,
Vol. 33, No. 16. DOI: 10.1002/cpe.6287.

10. Lai, S., Xu, L., Liu, K., Zhao, J. (2015).
Recurrent convolutional neural networks for
text classification. Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 29,
No. 1, pp. 2267–2273.

11. Lau, J. H., Baldwin, T. (2016). An empirical
evaluation of doc2vec with practical insights
into document embedding generation.
Proceedings of the 1st Workshop on
Representation Learning for NLP, pp. 78–86.
DOI: 10.18653/v1/w16-1609.

12. Lin, Y., Meng, Y., Sun, X., Han, Q.,
Kuang, K., Li, J., Wu, F. (2021).
BertGCN: Transductive text classification by
combining GNN and BERT. Proceedings
of the Association for Computational
Linguistics International Joint Conference
on Natural Language Processing.
DOI: 10.18653/v1/2021.findings-acl.126.

13. Maamar, Z., Wives, L. K., Badr, Y., Elnaffar,
S., Boukadi, K., Faci, N. (2011). LinkedWS: A
novel web services discovery model based on
the metaphor of “social networks”. Simulation
Modelling Practice and Theory, Vol. 19, No. 1,
pp. 121–132. DOI: 10.1016/j.simpat.2010.06.
018.

14. Martin, D., Burstein, M., Hobbs, J., Lassila,
O., McDermott, D., McIlraith, S., Narayanan,
S., Paolucci, M., Parsia, B., Payne, T., Sirin,
E., Srinivasan, N., Sycara, K. (2004). Owl-s:
Semantic markup for web services. www.w3.
org/submissions/OWL-S/.

15. Minaee, S., Kalchbrenner, N., Cambria,
E., Nikzad, N., Chenaghlu, M., Gao,
J. (2021). Deep learning–based text
classification: A comprehensive review.
ACM Computing Surveys, Vol. 54, No. 3,
pp. 1–40. DOI: 10.1145/3439726.

16. Peng, M., Cao, B., Chen, J., Liu, J., Li, B.
(2021). SC-GAT: Web services classification
based on graph attention network. Lecture
Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications

Engineering, Vol. 349, pp. 513–529. DOI: 10.
1007/978-3-030-67537-0 31.

17. Pennington, J., Socher, R., Manning,
C. (2014). Glove: Global vectors for
word representation. Proceedings of the
Conference on Empirical Methods in Natural
Language Processing, pp. 1532–1543.
DOI: 10.3115/v1/d14-1162.

18. Roman, D., de-Bruijn, J., Mocan, A.,
Lausen, H., Domingue, J., Bussler, C.,
Fensel, D. (2006). WWW: WSMO, WSML, and
WSMX in a nutshell. Proceedings of the Asian
Semantic Web Conference, pp. 516–522.
DOI: 10.1007/11836025 49.

19. Rong, X. (2014). word2vec parameter learning
explained. arXiV. DOI: 10.48550/ARXIV.1411.
2738.

20. Shi, M., Tang, Y., Liu, J. (2019). Functional
and contextual attention-based LSTM for
service recommendation in mashup creation.
IEEE Transactions on Parallel and Distributed
Systems, Vol. 30, No. 5, pp. 1077–1090.
DOI: 10.1109/tpds.2018.2877363.

21. Walsh, A. E. (2002). UDDI, SOAP, and WSDL:
The web services specification reference
book. Prentice Hall Professional Technical
Reference.

22. Wang, H., Shi, Y., Zhou, X., Zhou, Q., Shao,
S., Bouguettaya, A. (2010). Web service
classification using support vector machine.
Proceedings of the 22nd IEEE International
Conference on Tools with Artificial Intelligence,
pp. 3–6. DOI: 10.1109/ictai.2010.9.

23. Wang, X., Liu, J., Liu, X., Cui, X.,
Wu, H. (2020). A spatial and sequential
combined method for web service
classification. Proceedings of the Asia
Pacific Web and Web-Age Information
Management Joint International Conference
on Web and Big Data, pp. 764–778.
DOI: 10.1007/978-3-030-60259-8 56.

24. Xia, B., Fan, Y., Tan, W., Huang,
K., Zhang, J., Wu, C. (2015).
Category-aware API clustering and distributed

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 529–542
doi: 10.13053/CyS-28-2-4556

Deep Learning-Based Text Classification to Improve Web Service Discovery 541

ISSN 2007-9737

recommendation for automatic mashup
creation. IEEE Transactions on Services
Computing, Vol. 8, No. 5, pp. 674–687.
DOI: 10.1109/tsc.2014.2379251.

25. Xiao, Y., Liu, J., Kang, G., Cao, B. (2021).
LDNM: A general web service classification
framework via deep fusion of structured and
unstructured features. IEEE Transactions on
Network and Service Management, Vol. 18,
No. 3, pp. 3858–3872. DOI: 10.1109/tnsm.
2021.3084739.

26. Yang, Y., Qamar, N., Liu, P., Grolinger, K.,
Wang, W., Li, Z., Liao, Z. (2020). ServeNet:
A deep neural network for web services
classification. IEEE International Conference
on Web Services, pp. 168–175. DOI: 10.1109/
icws49710.2020.00029.

27. Yao, L., Mao, C., Luo, Y. (2018). Graph
convolutional networks for text classification.
Proceedings of the 33rd AAAI Conference on
Artificial Intelligence, pp. 7370–7377. DOI: 10.
48550/ARXIV.1809.05679.

28. Ye, H., Cao, B., Peng, Z., Chen, T., Wen,
Y., Liu, J. (2019). Web services classification
based on wide and Bi-LSTM model. IEEE
Access, Vol. 7, pp. 43697–43706. DOI: 10.
1109/access.2019.2907546.

29. Zhang, X., Liu, J., Cao, B., Shi, M.
(2021). Web service classification based on

information gain theory and bidirectional long
short-term memory with attention mechanism.
Concurrency and Computation: Practice and
Experience, Vol. 33, No. 13. DOI: 10.1002/cpe.
6202.

30. Zhang, Y., Yu, X., Cui, Z., Wu, S., Wen,
Z., Wang, L. (2020). Every document owns
its structure: Inductive text classification
via graph neural networks. Proceedings of
the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 334–339.
DOI: 10.18653/v1/2020.acl-main.31.

31. Zou, G., Qin, Z., He, Q., Wang, P., Zhang, B.,
Gan, Y. (2019). Deepwsc: A novel framework
with deep neural network for web service
clustering. IEEE International Conference on
Web Services, pp. 434–436. DOI: 10.1109/
icws.2019.00077.

32. Zou, G., Qin, Z., He, Q., Wang, P.,
Zhang, B., Gan, Y. (2022). DeepWSC:
Clustering web services via integrating service
composability into deep semantic features.
IEEE Transactions on Services Computing,
Vol. 15, No. 4, pp. 1940–1953. DOI: 10.1109/
tsc.2020.3026188.

Article received on 20/03/2023; accepted on 21/04/2024.
∗Corresponding author is Hadj Madani Meghazi.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 529–542
doi: 10.13053/CyS-28-2-4556

Hadj Madani Meghazi, Sid Ahmed Mostefaoui, Moustafa Maaskri, et al.542

ISSN 2007-9737

