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Abstract. One of the most widely used treatments for
cancer of the gastrointestinal (GI) tract is radiotherapy,
which requires manual segmentation of the affected
organs to deliver radiation without affecting healthy cells.
Deep learning techniques have been used, especially
variants of U-Net, to automate the organ segmentation
process, increasing the efficiency of medical treatment.
However, the effective segmentation of the GI tract
organs remains an open research problem due to their
high capacity to deform because of body movement and
respiratory function. This work proposes a methodology
that develops a weighted ensemble integrating U-Net++
models and Hidden Markov Models (2D-HMM) for
semantic segmentation of the stomach and bowels. Our
empirical evaluation reports a score of 0.811 for the Dice
coefficient using Leave-One-Out Cross-Validation, which
provides robustness to the results.

Keywords. Image segmentation, U-NET architecture,
machine learning, hidden Markov models.

1 Introduction

In 2018, an estimated 4.8 million people were
diagnosed with cancer in the gastrointestinal
tract worldwide, representing 26% of the global
cancer incidence.

Projections based on current trends predict an
increase of 58% to 7.5 million by 2040 [1]. Half of
these patients are eligible for radiotherapy [13].

During this process, a medical linear accelerator
(LINAC) delivers high doses of radiation to cancer
cells to kill them, possibly damaging nearby healthy
cells in the worst case.

The damage to healthy cells causes side effects
such as hearing loss, vomiting, and extreme
tiredness, among other side effects [18]. To reduce
collateral damage, oncologists try to direct X-rays
at tumors avoiding the organs at risk.

Magnetic Resonance Imaging Guided Linear
Accelerator (MR-Linac) allows observation of
tumors and organs in real-time to adjust the
radiation direction; however, oncologists must
manually segment organs, extending treatment
sessions up to an hour, during which time the
patient must remain immobile.

In recent years, Artificial Intelligence techniques
such as convolutional neural networks have been
able to perform auto-segmentation in cases of
brain tumors [6], neck cancer [11], and prostate
cancer [9, 8], halving the time of treatment
sessions [3]; however, there are few advances
in the segmentation of gastrointestinal (GI) tract
organs, mainly because soft tissue surrounds
abdominal organs, and such organs can vary in
shape and location throughout the day due to
digestive and respiratory movements [10].

In this work, we propose a methodology,
based on deep learning, for pre-processing and
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Fig. 1. Methodology for the Design and Validation of Segmentation Models of the GI Tract

segmentation of magnetic resonance images of the
digestive tract. The architecture of our approach
is a weighted ensemble based on U-Net models
and two-dimensional Hidden Markov Models
(2D-HMM) that performs semantic segmentation of
the stomach, and small and large bowels.

The proposed methodology has the potential
to help implement more effective and efficient
treatments for patients by speeding up the
segmentation process.

We evaluated the proposed methodology using a
dataset of images from the UW-Madison Carbone
Center, provided publicly on the Kaggle platform
as part of the UW-Madison GI Tract Image
Segmentation Competition1, without compromising
the run-time and memory space requirements of
the segmentation process. This work is organized
as follows. In the next section, we present a review
of the literature.

Section 3 describes the proposed methodology
illustrating the different stages of the process.

1www.kaggle.com/competitions/
uw-madison-gi-tract-image-segmentation

Then, Section 4 discusses the results obtained
from the generated models. In the last section, we
present our conclusions.

2 Related Work

Recent studies in Biomedical Engineering use
Artificial Intelligence deep learning techniques to
assist in the segmentation of medical images
for diagnostics and treatment processes [16]; in
particular, variants of U-Net architectures.

Deep learning models have good performance
in medical image segmentation because they
have the ability to simultaneously combine high
and low-level information to extract complex
image features.

However, segmentation of the GI tract organs
remains a challenging task [7], since these organs
have a high capacity to deform by body movement
and respiratory functions of individuals.

Due to the above, there are few studies on
the successful and extensive use of MR-Linac
for cases of stomach cancer [21], and on the
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(a) Stomach (b) Small bowel (c) Large bowel

Fig. 2. Heatmaps for each organ

Fig. 3. Original architecture of U-Net++ from [22]

application of U-Net architectures for this type
of imaging, most studies are based on complex
models such as 3D U-Net.

In [12], authors proposed a U-Net to segment
the liver, stomach, duodenum, and kidney on 3D
patch-based computed tomography (CT) images.
Their results were promising for the stomach,
reaching a score of 0.813 for the Dice Similarity
Coefficient (DSC), but less significant for the
duodenum where they obtained 0.595.

Other works proposed a similar approach to
segment the organs of the GI tract in 2022 [19].
In a preliminary report, their work compares the
performance of different encoders for a classical

U-Net architecture, with the Resnet34 encoder
reporting the best results.

Additional work presents a U-Net and
Region-based Convolutional Neural Networks
(Mask R-CNNs) to perform segmentation of GI
tract organs [5], on the same UW-Madison dataset
we used in this study.

The authors report that their Mask R-CNN model
achieved a DSC score of 0.73 in their validation
data. Other works use Vision Transformers
to segment, in the same way, the images of
UW-Madison [15].

The proposed model is hybrid. It uses a LeViT
architecture as the encoder and a U-Net++ as the
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(a) Stomach (b) Small bowel (c) Large bowel

Fig. 4. Transition matrices

(a) Stomach (b) Small bowel (c) Large bowel

Fig. 5. Probability distributions as a function of pixel color

decoder. The resulting model obtains a score of
0.79 for DSC and 0.72 for IoU.

In [7], an automatic contour refinement
(ACR) method based on probability maps for
correcting self-segmented contours in magnetic
resonance-guided radiation therapy is described.

Self-segmentation was generated by a 3D deep
CNN architecture (a modified 3D-ResUNet), the
DSC changed from 0.44 to 0.56, from 0.33 to 0.55,
and from 0.34 to 0.54, in the stomach, small bowel,
and large bowel, respectively.

Furthermore, there are works that explore
the use of Hidden Markov Models (HMM) for
multi-class image segmentation [17], in which the
hidden states of a Markov model represent the true
segmentation of the image.

In addition, in [2], authors used two-dimensional
Markov models (2D-HMM) for effective
segmentation of radiographs, multispectral
and synthetic images. Despite the potential of
HMMs, there are no comprehensive studies of
their application in the segmentation of magnetic
resonance images.

There are recent works in the literature that
combine the use of convolutional operators with
adaptive HMMs to segment brain images [14, 20].

However, to the best of our knowledge, no
method incorporates HMMs in the segmentation
of GI tract images as we propose in this work.
In summary, deep learning approaches, especially
U-Net variants, are the most explored methods in
the literature to analyze biomedical images [16].

The application of these methods to segment
images of the gastrointestinal tract remains a
challenge and an open area of research.

3 Methodology

In this section, we present a methodology that
consists of three phases.

The first phase includes pre-processing of the
images of the dataset (3.1), the second is the
design and construction of the segmentation
models (3.2), and finally, the validation phase of
the models through experimentation and analysis
of results (4). In Fig. 1, you can see the general
stages of the proposed methodology.
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Algorithm 1 2D-HMM Segmentation Algorithm

Calculate Pe, PO and PT

ω[128][128] : float ▷ Image to process
M [128][128][4] : float ▷ Predicted segm matrix
S ← [0, 1, 2, 3] ▷ States classification
for i, j ∈ ω do

for l ∈ S do
Oi,j = ω[i][j]
Pi,j = PO(l∥Oi,j) · Pe(l∥i, j)
temp[4][4]: float

for m,n ∈ S do
temp[m][n] = Pi,j · PT (l∥m,n)

end for
M [i][j][l] = max(temp)

end for
end for
return argmax

l
M ▷ Final segmentation

3.1 Data Pre-Processing

As we can see in Fig. 1, the first phase
of the methodology consists of preparing the
data. The dataset used in this research is public
and was provided by the UW-Madison Carbone
Cancer Center.

The data repository consists of 272 MRI sets
in 16-bit grayscale PNG format from 85 cancer
patients during radiation treatment. Each scan has
144 slices, which gives a total of 39,168 images.

The training annotations are RLE (Run-Length
Encoding) encoded masks for the segmentation of
three organs of the GI tract: stomach, large bowel,
and small bowel.

The images are of different dimensions;
therefore, it was necessary to standardize them.
Consequently, we normalized them and their
respective RLE-encoded masks to a size of
128 × 128 px.

Furthermore, to visualize the pattern in the
distribution of the organs in the sample, we plotted
the heatmaps of each organ (see Fig. 2).

3.2 Design and Construction of
Segmentation Models

As previously mentioned, our proposed
methodology considers creating two models
for organ segmentation and an ensemble that
integrates both models. The first model considers
a U-Net++ type architecture, while the second one
is a two-dimensional HMM (2D-HMM).

The individual processes for the construction
and training of both models are described below,
as well as the process of their integration for
the ensemble.

3.2.1 U-Net++ Model

Such architecture was designed to solve limitations
of the base U-Net model in the segmentation
of medical images [22] by including a series
of additional connections to the original U-Net
for the effective recovery of the fine granularity
details of the objects, including deep supervision
that allows establishing different configurations of
its parameters.

The additional connections of the U-Net++ follow
a pyramid rule, where the shape of U is filled
with convolutional blocks, each one consisting of
a certain number of layers that vary according to
the network nodes. The original U-Net++ diagram
from [22] is shown in figure 3.

In this work, the network was implemented in
Python 3.8 following the version proposed in [22].

The hyper-parameters of the model were
adjusted with the Keras API grid search, selecting
relu as the activation function in the hidden layers,
0.1 as dropout rate, 5 × 10−4 as the learning rate
for 50 epochs and Adam as optimizer.

Finally, sigmoid was used as the activation
function in the last layer instead of softmax
to assign probabilities to each class instead of
distributing them.

For the hyper-parameters determination, a
partition of 80% of the total images was made for
training and 20% for validation.

We used the DICE coefficient optimized per
organ as a loss function, integrated as a weighted
sum given class imbalance.
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Table 1. Weight values α of 2D-HMM . U-Net++ ensemble evaluated

Metric
Weight α

0.05 0.10 0.20 0.30 0.40

Dice

General 0.811 0.799 0.788 0.771 0.742
Stomach 0.888 0.885 0.872 0.844 0.749

Small Bowel 0.812 0.791 0.759 0.701 0.601
Large Bowel 0.817 0.814 0.804 0.786 0.747
IoU 0.777 0.770 0.748 0.709 0.628

Table 2. Experimentation results with the proposed models

Metric
Models

2D-HMM.U-Net++ 2D-HMM.U-Net U-Net++ U-Net

Dice

General 0.811 (32%) 0.723 (34%) 0.610 0.538
Stomach 0.888 (10%) 0.803 (26%) 0.808 0.635
Small Bowel 0.812 (38%) 0.711 (29%) 0.585 0.548
Large Bowel 0.817 (5.6%) 0.774 (43%) 0.773 0.538
IoU 0.777 (18%) 0.696 (36%) 0.657 0.511

Table 3. Comparison with Recent Segmentation Models of the GI Tract *These models use different data for
their evaluation

Metric
Models in the Literature

2D-HMM
U-Net++

U-Net Mask R-CNN Resnet34
LeViT384-

UNet++
3D-ResUnet* 3D U-Net*

Dice

General 0.81 0.51 0.72 0.79 0.79
Stomach 0.88 0.77 0.81
Small Bowel 0.81 0.75
Large Bowel 0.81 0.76
IoU 0.77 0.85 0.72

Let y ∈ R128×128×4 be the real segmentation
matrix, ŷ ∈ R128×128×4 the segmentation predicted
by the network, let S ∈ {stomach, small bowel,
large bowel, background} be the set of states of
the classification.

Therefore ŷl ∈ R128×128 refers to the
segmentation corresponding to the organ l ∈ S.

Finally, let αl be the inverse frequency of
the organ class l. The equation 1 shows the
process mathematically:

L(y, ŷ) =
∑
l∈S

αl
2|yl ∩ ŷl|
|yl|+ |ŷl|

. (1)

3.2.2 Two-Dimensional Markov Model
(2D-HMM)

Hidden Markov Models are a statistical technique
that allows the creation of a model with observed
and hidden events as causal factors in a
probabilistic model.

An HMM consists of two stochastic processes,
a hidden state process, and an observable
symbol process, where the hidden states form a
Markov chain, and the probability distribution of
the observed symbol depends on the underlying
states. In the case of image segmentation, the
intuition is that pixels in an image depend on those
surrounding them; that is, they share common
characteristics such as color and spatial location.
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Fig. 6. Example of segmentation in set 249 for a certain cut

Therefore, it is possible to treat this pixel
dependency as a Markov Random Field, which
relates two main probabilities: transition (PT ) and
observation (PO).

Intuition indicates that pixels (i,j) of an image are
related to their neighbors. The transition probability
PT indicates that the state s to which a pixel
belongs, expressed as si,j , is related to the state
of the left side pixel si−1,j and the upper one si,j−1.

That is, PT = P (si,j = l∥si−1,j = n, si,j−1 = m).
Let S be the set of states in which a pixel can be
classified, and let Ω be the total set of images. The
calculation of PT is expressed in equation 2, where
I(·) is the counting function that returns one if the
condition is fulfilled, and 0 otherwise:

PT (l|n,m) =
1

∥Ω∥
∑
ω∈Ω

∑
i,j

I(si,j , si−1,j , si,j−1)∑
i,j

I(si,j)
, (2)

where:

si, j = l,
si−1, j = n,
si, j−1 = m.

For all l, m, n ∈ S. The computed transition
probabilities are shown in Fig. 4. For example,
we can observe in Fig. 4a that if the state of the
current pixel corresponded to the stomach, there
would be a probability of 4.5% that the upper pixel
was the stomach and the left one the background
of the image; while there is an 87% probability that
both correspond to the same organ.

On the other hand, the likelihood that the
neighboring pixels correspond to the other organs
is practically null.

The observation probability is calculated based
on the color of each pixel (Oi,j) measured between
0 and 255. A skewnorm probability distribution
function was fitted to the colors of each of
the organs.

Let PO(si,j = l∥Oi,j) be the function that takes
as inputs the color of pixel i, j and returns the
probability that it belongs to state l ∈ S. These
functions are shown graphically in figure 5.

As can be seen, making a maximum likelihood
estimate would be imprecise because the
observation probabilities for the stomach and
small bowel are similar. More information needs to
be integrated.

In the current work, the state of a pixel, in
addition to being conditioned by the previously
described probabilities, is also influenced by the
spatial position in the image; that is, there are
high-probability zones in which an organ can
appear, as shown in the heatmaps (see Fig. 2).

Thus, the probability Pe that a pixel (i,j) belongs
to a state si,j = l is calculated by integrating
the probabilities described above as shown in
equation 3:

Pe(l|i, j) =
1

∥Ω∥
∑
ω∈Ω

I(si,j = l). (3)

Therefore, the final calculation of the probability
that the state of the pixel (i, j) is l is shown in
equation 4. Naturally, Pe and PT are computed
in advance during the training phase and stored
for reference. In the case of PO, the parameters
of the distributions are saved and their value
is calculated:

P (si,j = l) = PT (l|n,m) ·PO(l|Oi,j) ·Pe(l|i, j), (4)
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Fig. 7. Example of segmentation in set 143 for a certain cut

The proposed calculation takes into account the
spatial, observational, and transition factors of the
pixels. The way to incorporate the calculations
for the segmentation of a new image is shown in
algorithm 1.

In the present work, the multiplication of
probabilities was replaced by the logarithmic sum
of the probabilities to avoid a problem of negative
overflow or underflow.

It is important to note that the purpose of
the 2D-HMM is not the segmentation itself, but
the calculation of efficient probabilities to improve
the performance of U-Net++. For this reason,
we omit to include an adaptation of the Viterbi
algorithm in 2D.

3.2.3 Ensemble

To integrate the information from the U-Net++ and
2D-HMM models, a weighted ensemble layer is
proposed, which uses the probabilities given by
both models to enhance the classification.

Let H, U ∈ R128×128×4 be the probability
matrices calculated by 2D-HMM and U-Net++
respectively. The weighted integration is shown in
equation 5:

E(H, U) = αU + (1− α)H. (5)

The value of α is selected from the search space
{0.05, 0.10, 0.20, 0.30, 0.40} that was determined
empirically. The metric results for each value of
α are shown in the next section. In the final
segmentation, maximum likelihood is applied to the
ensemble to obtain the highest probability state l in
each pixel in the matrix.

4 Results and Analysis

The experimentation was carried out on the Google
Colab platform using a Colab notebook with an
Intel(R) Xeon(R) 6-core CPU @ 2.20GHz, NVIDIA
A100-SXM GPU, and 12 GB of RAM.

For the training and validation phase of
the models, the Leave-One-Out Cross-Validation
method was followed, which is one of the
recommended methods in biomedical sciences to
improve the predictive rate of models for clinical
studies [4].

The method consists of testing the model on a
set of ω images and training both the 2D-HMM
and U-Net++ parameters with Ω \ ω. With this, the
training consists of 271 sets of 39,024 images in
total and the test consists of one set of 144 images.

One of the first tasks of the evaluation phase was
to adjust the weight parameter α of the proposed
ensemble, the results are shown in table 1. The
case α = 0 would refer to the U-Net++ and
α = 1 to the 2D-HMM. We can observe that the
best results for the ensemble in the evaluation
metrics are obtained when α = 0.05.

We can observe in table 2 the results of all
the proposed models. It is noteworthy that
the U-Net models that incorporate information
from the Markov process report better results in
both evaluation metrics, satisfying our intuition for
their integration.

For example, in the general Dice for the U-Net++
ensemble, there is an improvement percentage
of 32% over U-Net++, while the U-Net ensemble
obtains an improvement of 34% with respect to its
individual model. In the case of the IoU metric, the
improvement percentage is 18% for the U-Net++
ensemble and 36% for the one based on U-Net.
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Fig. 8. Example of 3D segmentation for set 249

Fig. 9. Example of 3D segmentation for set 143

Finally, table 3 compares the results of the
proposed 2D-HMM U-Net++ model with recent
works from the literature on the problem of
segmentation of biomedical images of the GI tract,
which were discussed in Section 2.

Notice that not every approach reports results
on the segmentation of individual organs as we do,
considering that segmenting the bowels is a harder
task due to their physiology.

In addition, there are a couple of models that use
a different GI dataset for evaluation. However, we
consider it important to include their results as they
are involved with the same top-level goal.

We can see that our approach surpasses most
of the works in the evaluation metrics, except
for the Resnet34 model that only reports results
regarding the IoU metric; however, this work
followed a traditional 80 - 20 partition methodology
to evaluate, which can make the result highly
dependent on the partition used. Figures 6 - 8
and 7 - 9 show 2D and 3D visual examples of
segmentation for a specific slice of a resonance

set. In these examples, the ensemble enhanced
the predictions of the U-Net++ by up to 19%. For
example, the U-Net++ prediction, illustrated by the
fourth image of Fig. 7, misses multiple organ
details compared to the true image.

However, the weighted ensemble is capable
of restoring these details, as can be seen in
the last column of the same figure set. In
general, we can observe how the proposed
ensemble significantly increases the quality of the
segmentation. In summary, although the U-Net++
model has proven to be an effective architecture
for organ segmentation, it has deficiencies in
segmenting certain sections of the GI tract by
containing two or more classes of organs with
high likelihood, due to the high capacity of the GI
organs to deform because of body movement and
respiratory function.

This work integrates the probabilities of the
Hidden Markov Models to discern those cases
where the base model fails to segment. Our
work considers spatial and transition probabilities,
constituting the main difference from related work.
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5 Conclusions

Organ segmentation for the treatment of
gastrointestinal tract cancer is an important
task that requires precision and speed. It is vital
to have algorithms that can help automate the
process of segmentation, as support for medical
specialists, to reduce collateral damage to healthy
cells without increasing treatment times. However,
segmenting GI tract organs remains complex
due to the deformations they undergo from body
movement and respiratory function.

This paper proposes a Deep Learning
methodology that develops a weighted ensemble
integrating U-Net++ and 2D-HMM models
for semantic segmentation of the stomach
and bowels. Although 2D-HMM does not provide
highly accurate segmentation by itself, it boosts
U-Net++ predictions in the general Dice by up to
32% and by up to 18% in IoU scores. The final
precision of 0.811, obtained by the ensemble in
the general Dice, is better than the results reported
in the literature.

Furthermore, by using Leave-One-Out
cross-validation, the metric provided has a
high level of reliability over the dataset used. The
proposed architecture has the potential to help
implement more effective and efficient treatments
for cancer patients by speeding up the targeting
process of segmentation and minimizing risks.

Part of the future work will consider the
integration of automatic contour refinement
techniques or additional recurrent layers in
the networks, which we believe could improve
the quality given by the spatial and transition
probabilities of the proposed ensemble. In
addition, we plan to replicate the proposed
methodology in other datasets to evaluate
its generalization.

References

1. Arnold, M., Abnet, C. C., Neale,
R. E., Vignat, J., Giovannucci, E. L.,
McGlynn, K. A., Bray, F. (2020).
Global burden of 5 major types of
gastrointestinal cancer. Gastroenterology,

Vol. 159, No. 1, pp. 335–349. DOI:
10.1053/j.gastro.2020.02.068.

2. Baumgartner, J., Georgina-Flesia, A.,
Gimenez, J., Pucheta, J. (2013). A new
approach to image segmentation with
two-dimensional Hidden Markov models.
BRICS Congress on Computational
Intelligence and 11th Brazilian Congress
on Computational Intelligence, pp. 213–222.
DOI: 10.1109/brics-cci-cbic.2013.43.

3. Bertelsen, A. S., Schytte, T., Møller, P. K.,
Mahmood, F., Riis, H. L., Gottlieb, K. L.,
Agergaard, S. N., Dysager, L., Hansen,
O., Gornitzka, J., Veldhuizen, E., O’Dwyer,
D. B., Christiansen, R. L., Nielsen, M.,
Jensen, H. R., Brink, C., Bernchou, U.
(2019). First clinical experiences with a
high field 1.5 t MR linac. Acta Oncologica,
Vol. 58, No. 10, pp. 1352–1357. DOI: 10.1080/
0284186x.2019.1627417.

4. Chicco, D., Jurman, G. (2022). The ABC
recommendations for validation of supervised
machine learning results in biomedical
sciences. Frontiers in Big Data, Vol. 5. DOI:
10.3389/fdata.2022.979465.

5. Chou, A., Li, W., Roman, E. (2022). Gi
tract image segmentation with U-Net and mask
R-CNN. CS231n: Deep Learning for Computer
Vision 164, Stanford University.
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