
Grammatical Evolution with Codons Selection Order
as Intensification Process

Andrés Espinal, Marco Aurelio Sotelo-Figueroa*, Jorge Alberto Soria-Alcaraz

Universidad de Guanajuato,
Departamento de Estudios Organizacionales,

Mexico

masotelo@ugto.mx

Abstract. Grammar Evolution (GE) can be considered
a form of Genetic Programming (GP) that has become
very popular in the field of Automatic Programming (AP)
over the last few years. There has been a lot of
research on different aspects of GE, including its parts;
the Search Engine, Mapping Process, and Grammar.
However, it has been shown that it is possible to select
the codons randomly to improve the GE, using a random
permutation. This paper introduces a new approach to
intensify a solution using permutation heuristics to guide
the codon selection order. A non-parametric test was
applied to discern between the results obtained by the
proposal and those obtained by the canonical GE version
and the GE with random permutations.

Keywords. Grammatical evolution, symbolic
regression, intensification.

1 Introduction

Two important approaches to automatically
generate computer programs are Genetic
Programming (GP) [23, 26] and Automatic
Programming (AP) [15, 3, 39]. These methods
have proven invaluable in improving algorithms
and resolving challenging issues.

They all have different restrictions and
difficulties, and to solve some of these restrictions,
a different evolution-inspired method appeared
recently, namely Grammatical Evolution (GE)
[37]. This method combines the strength of
GP with a more methodical strategy based on
formal grammar.

GP is an evolutionary algorithm that works
based on a population of potential solutions, often

represented as tree structures to develop programs
[25, 31, 24]. By utilizing evolutionary operators
including crossover, mutation, and selection, the
goal of GP is to evolve programs that can carry out
particular tasks.

Some of the issues GP can present in execution
are program bloat, inefficiency, and a lack of
control over the search space [32]. There are
several proposals to improve GP [5, 10]; one
of them [21] includes metaheuristics to improve
GP performance.

By establishing a mapping mechanism that
relates a given program genotype and phenotype,
Grammatical Evolution (GE) offers a solution to
these problems. It uses formal context-free
grammars to do this [38]. Grammatical Evolution
evolves strings of symbols as opposed to program
trees directly.

A mapping process between these strings of
symbols and computer programs is applied by this
method, producing solutions with semantic and
syntactic validity. The differentiation of genotype,
the evolving string, from the phenotype, the
completed program, is one of the major advances
of Grammatical Evolution [34].

Because grammars may be created to contain
specific structural and syntactical restrictions, this
separation improves control over the search space
by lowering the possibility that inappropriate or
inefficient programs would be constructed.

Moreover, by altering the genotype, the search
space may be explored more efficiently, producing

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 837–846
doi: 10.13053/CyS-28-2-5026

ISSN 2007-9737

Fig. 1. Classical derivation example [45]

a more methodical program evolution. One of the
research fields in GE is search engines.

There are several metaheuristics used as
search engines like Genetic Algorithm (GA)
[16], Differential Evolution (DE) [33, 17], Particle
Swarm Optimization (PSO) [36, 42], Estimation
Distribution Algorithms (EDA) [40, 29], and Ant
Colony Optimization (ACO) [13] among others.

In [44], it was proposed to change the codon
selection using a random permutation; this process
was used with GE as a search engine, obtaining
better results than classic GE. GE has been
used successfully in many problems; however, the
Symbolic Regression Problem (SRP) has been
proposed and utilized as a benchmark problem
for GE [1, 4, 43, 30].

The result of applying GE to SRP is an
expression or function that fits a given instance of
the problem. It is necessary to use formal grammar
to ensure that the generated expression or function
has syntactic validity.

Finally, GE explores a wide range of possible
expressions at execution time, allowing it to
discover highly accurate expressions. This paper
proposes a methodology to evolve the codon
selection order using the 2-opt, 3-opt, and 5-opt,
and inversion permute heuristics.

This proposal is tested with instances of
the SRP problem. The results obtained
by this proposal, the canonical GE version,
and the GE with Random Permutations were
compared statistically.

2 Grammatical Evolution

The Grammatical Evolution (GE) [37, 38, 34] is
a grammar-based form of Genetic Programming
(GP) [22, 23]. The concepts of genotype and
phenotype are present in both GP and GE.

Originally, the genotype in GP is based on
tree representations, which are evaluated directly
to obtain the phenotype, whereas GE uses a

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 837–846
doi: 10.13053/CyS-28-2-5026

Andrés Espinal, Marco Aurelio Sotelo-Figueroa, Jorge Alberto Soria-Alcaraz838

ISSN 2007-9737

Fig. 2. Derivation example based on permutations [45]

Fig. 3. Available data

linear representation, which is employed with a
grammar to obtain the phenotype. The four main
components, shown in Figure 5.

– The Problem Instance defines the problem
domain and its conditions. It is used as a
measure to guide the search engine and make
the optimization process.

Fig. 4. Representative expression

– The Grammar establishes elements and rules
that fit the problem instance’s specifics. In GE,
Backus-Naur Form is commonly employed [2],
although alternatives such as Attribute Grammar
[20, 11] or Christiansen Grammar [7, 35] can
also be applied.

– The Search Engine oversees optimization and
adjusts the genotype based on the quality of
the phenotype applied to the problem instance.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 837–846
doi: 10.13053/CyS-28-2-5026

Grammatical Evolution with Codons Selection Order as Intensification Process 839

ISSN 2007-9737

Algorithm 1 Grammatical evolution algorithm

Require: pop size, dimtext, search engine,
cont apply LS, heuristic

1: Population← new population (pop size, dim)
2: Per← generate permutation(dim)
3: Fitness← Evaluate(Population, Per)
4: Cont← 0
5: GBest← get Best(Population, Fitness)
6: while termination condition not met do
7: Population← search engine(Population)
8: Fitness← Evaluate(Population, Per)
9: Best← get Best(Population, Fitness)

10: if GBest=Best then
11: Cont← Cont + 1
12: else
13: GBest← Best
14: Cont← 0
15: end if
16: if Cont = cont apply LS then
17: Per← heuristic(Per)
18: Cont← 0
19: end if
20: end while
21: return Best Solution

While the Genetic Algorithm stands as the
canonical search engine [16], numerous others
have been implemented.

– The Mapping Process facilitates the conversion
between genotype and phenotype, employing
specific strategies such as Depth-First [34],
Breadth-First [12], π Grammatical Evolution
[36], etc.

Figure 1 shows an example of a classic GE, it
uses a sequential codon selection order, and the
search engine is applied to the codon values.

Figure 2 shows the proposal [44] example, it
uses a permute codon selection order. Figure 1
and 2 uses the same codon values and the results
show that is possible to obtain different phenotypes
using a selection order.

3 Symbolic Regression Problem

Symbolic Regression Problem (SRP) [1, 4, 18]
is the process of obtaining a representative

Table 1. Symbolic regression functions used as
instances set

Function Polynomial

F1 f (x) = X3 +X2 +X

F2 f (x) = X4 +X3 +X2 +X

F3 f (x) = X5 +X4 +X3 +X2 +X

F4 f (x) = X6 +X5 +X4 +X3 +X2

+X

F5 f (x) = sin
(
x2

)
cos (x)− 1

F6 f (x) = sin (x) + sin
(
x+ x2

)
F7 f (x) = log (x+ 1) + log

(
x2 + 1

)
F8 f (x) =

√
x

F9 f (x, y) = sin (x) + sin
(
y2
)

F10 f (x, y) = 2sin (x) cos (y)

Keijzer1 f (x) = 0.3xsin(2πx)

Keijzer2 f (x) = 1 + 3x+ 3x2 + x3

Keijzer3 f (x, y) = 8/(2 + x2 + y2)

Keijzer4 f (x, y) = x4 − x3 + y2/2− y

Keijzer5 f (x, y) = x3/5 + y3/2− y − x

Keijzer6 f (x1,x2, . . . ,x10) = 10.59x1x2+
100.5967x3x4 − 50.59x5x6+
20x1x7x9 + 5x3x6x10

expression from available data that we use when
we want to know what was the equation behind
our instance.

In SRP, the goal is to seek a model (an equation
or a mathematical formula) that describes the
relationship between the input variables and the
target output variable, without prior knowledge of
the functional form.

SRP represents an important problem studied
for the GP community [18, 43, 30].

Figure 3 shows the available data from the
instance without knowing the function and Figure
4 shows the proposed expression to generate
the data.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 837–846
doi: 10.13053/CyS-28-2-5026

Andrés Espinal, Marco Aurelio Sotelo-Figueroa, Jorge Alberto Soria-Alcaraz840

ISSN 2007-9737

Table 2. Median of the results obtained for each instance
and GE variant

Function GA Rnd Inv 2opt 3opt 5opt

F1 0.000 0.000 0.000 0.000 0.000 0.000

F2 0.033 0.012 0.034 0.033 0.031 0.035

F3 0.082 0.082 0.105 0.100 0.065 0.081

F4 0.143 0.112 0.112 0.123 0.130 0.154

F5 0.049 0.044 0.046 0.056 0.046 0.046

F6 0.036 0.043 0.044 0.040 0.023 0.040

F7 0.254 0.256 0.254 0.221 0.223 0.253

F8 0.095 0.103 0.094 0.100 0.094 0.098

F9 0.036 0.046 0.047 0.066 0.036 0.043

F10 0.044 0.044 0.046 0.044 0.044 0.045

Keijzer1 0.061 0.055 0.061 0.059 0.061 0.059

Keijzer2 0.000 0.000 0.000 0.000 0.000 0.000

Keijzer3 0.408 0.408 0.408 0.408 0.404 0.408

Keijzer4 0.677 0.677 0.677 0.677 0.677 0.677

Keijzer5 0.427 0.426 0.426 0.426 0.425 0.428

Keijzer6 2.448 2.233 3.826 3.137 2.943 4.283

4 Proposed Approach

Figure 2 shows the proposal from [44] using a
codon position random permutation. The proposal
is shown in Algorithm 1, the permutation heuristics
is applied if the best proposal solution is not
improved for n generations.

In this study, the n value to apply the
perturbation heuristic was determined empirically.
The permutation heuristics were taken from the
state-of-art based on those that can be applied to
the Traveler Salesman Problem (TSP) [28, 8] and
widely studied permutation problem.

4.1 k-opt

The k-opt heuristic [9, 27, 6] is classified as a local
search method because it only slightly modifies the
current solution to try to make it better.

It does not ensure the identification of the
globally optimal solution, but it remains effective in
perturbing an initial solution.

A k-opt heuristic is an attempt to enhance the
quality of a solution using iterative swapping of
pairs of items. Figure 6 shows an example of 2-opt.

Table 3. GA parameters

Parameter Value

Population Size 300

Dimensions 100

Iterations to apply the heuristic 5

Function Evaluations 250,000

Selection Binary Tournament

Crossover 2-points

Mutation Bit-flip

Mapping Process Depth-First

4.2 Inversion

The inversion heuristic [16, 8] involves selecting
a subset of the proposal solution and investing
the order of its elements. This heuristic neither
ensures the identification of the globally optimal but
is effective in perturbing an initial solution.

This operation introduces diversity in the
population and can potentially explore different
regions of the solution space. Figure 7 shows an
example of Inversion.

5 Experimental Setup

Table 1 shows the Symbolic Regression functions
used, the functions F1 to F10 were taken from
[18, 45] and the Keijzer from [19, 43, 14]. Mean
Root Squared Error (MRSE), Equation 1, was used
as a fitness function to discern the quality of each
expression proposed by GE:

MRSE =

√√√√ 1

n

n∑
i=1

(ti − yi)
2
, (1)

where:

– n is the number of data points.

– yi is the real value.

– ti corresponds to the value obtained.

Grammars used by each function [45] are
the followings:

– Grammar 1 for functions F1 to F8.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 837–846
doi: 10.13053/CyS-28-2-5026

Grammatical Evolution with Codons Selection Order as Intensification Process 841

ISSN 2007-9737

Fig. 5. GE methodology [41]

Fig. 6. 2-opt example, the first array contains a
permutation from 1 to 10, it was chosen two items to
interchange it into the second array

⟨start⟩ |= ⟨expr⟩
⟨expr⟩ |= (⟨expr⟩⟨op⟩⟨expr⟩) | ⟨pre⟩(⟨expr⟩) | ⟨var⟩
⟨var⟩ |= 1 | x

⟨pre⟩ |= exp | log | sin | cos

⟨op⟩ |= * | / | + | -

Grammar 1. Grammar for the functions F1 to F8

– Grammar 2 for functions F9 to F10.

– Grammar 3 for functions Keijzer1 to Keijzer5.

– Grammar 4 for function Keijzer6.

The parameters used in the classic GE,
Random Permutation GE, and current proposal
are shown in Table 3. Those parameters were
taken from [44], and the new parameter used
to apply the permutation heuristic was chosen
empirically. To conduct the comparison, 33
individual runs were executed for each function,
using the proposed approach, classical GE, and
Random Permutation GE.

Table 4. Ranking based on medians

Algorithm Ranking

3opt 2.28125

Rnd 3.03125

GA 3.53125

2opt 4.03125

5opt 4.03125

Inv 4.09375

⟨start⟩ |= ⟨expr⟩
⟨expr⟩ |= (⟨expr⟩⟨op⟩⟨expr⟩) | ⟨pre⟩(⟨expr⟩) | ⟨var⟩
⟨var⟩ |= 1 | x | y

⟨pre⟩ |= exp | log | sin | cos

⟨op⟩ |= * | / | + | -

Grammar 2. Grammar for the functions F9 to F10

⟨start⟩ |= ⟨expr⟩
⟨expr⟩ |= (⟨expr⟩⟨op⟩⟨expr⟩) | ⟨var⟩
⟨var⟩ |= 1 | x | y

⟨op⟩ |= * | / | + | -

Grammar 3. Grammar for the functions Keijzer
from 1 to 5

⟨start⟩ |= ⟨expr⟩
⟨expr⟩ |= (⟨expr⟩⟨op⟩⟨expr⟩) | ⟨pre⟩(⟨expr⟩) | ⟨var⟩
⟨pre⟩ |= exp | log | sin | cos

⟨var⟩ |= 1 | x⟨c⟩
⟨op⟩ |= + | - | * | /

⟨c⟩ |= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Grammar 4. Grammar for the function Keijze 6

The median of the results was used for
statistical comparison among the proposed
approach, GE, and Random Permutation GE.

The statistical test was performed using the
non-parametric Friedman test, which aimed to
establish if any implementation was capable of
outperforming the others.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 837–846
doi: 10.13053/CyS-28-2-5026

Andrés Espinal, Marco Aurelio Sotelo-Figueroa, Jorge Alberto Soria-Alcaraz842

ISSN 2007-9737

Fig. 7. Inversion example, the first array contains a
permutation from 1 to 10, it was chosen a range to invert
it into the second array

6 Results

Table 2 shows the median of the results of the 33
experiments for each instance. To discern between
the results, a non-parametric Friedman test was
performed. The value obtained was 11.99107143
with a p-value of 0.034910328.

With this p-value less than 0.1, it was possible
to make a post-hoc procedure to determine which
GE variant obtained the best results. The results of
the post-hoc test are shown in Table 4.

7 Conclusions

This paper introduced a methodology to intensify
the Grammatical Evolution solutions. The
intensification was based on the codon position
random permutation used previously, where it was
shown that a random permutation improves the
Grammatical Evolution results.

The permutation was guided by permutation
heuristics from the state-of-the-art, using a
k-opt and inversion heuristics that have been
applied to permutation problems. Symbolic
Regression Problems were used because they
are widely used in Grammatical Evolution and
Genetic Programming to analyze improvement
and performance.

The results obtained using the proposal
with a 3-opt heuristic are better than the
random permutation and the classic Grammatical
Evolution. Not all variations of the opt heuristic
gave good results, nor did the inversion heuristic.
The improvement of n generations was used as
a parameter to apply the permutation heuristics;
however, it is possible to identify a way to apply
it without being an extra parameter.

References

1. Augusto, D. A., Barbosa, H. J.
(2000). Symbolic regression via genetic
programming. Proceedings of the VI
Brazilian Symposium on Neural Networks,
IEEE Computer Society, pp. 173–178.
DOI: 10.1109/SBRN.2000.889734.

2. Backus, J. W., Bauer, F. L., Green, J., Katz,
C., McCarthy, J., Naur, P., Perlis, A. J.,
Rutishauser, H., Samelson, K., Vauquois,
B., Wegstein, J. H., van-Wijngaarden,
A., Woodger, M. (1963). Revised report
on the algorithmic language ALGOL 60.
Communications of the ACM, Vol. 5, No. 4,
pp. 349–367. DOI: 10.1093/comjnl/5.4.349.

3. Balzer, R. (1985). A 15 year perspective
on automatic programming. IEEE
Transactions on Software Engineering,
Vol. SE-11, No. 11, pp. 1257–1268.
DOI: 10.1109/TSE.1985.231877.

4. Barmpalexis, P., Kachrimanis, K.,
Tsakonas, A., Georgarakis, E. (2011).
Symbolic regression via genetic programming
in the optimization of a controlled
release pharmaceutical formulation.
Chemometrics and Intelligent Laboratory
Systems, Vol. 107, No. 1, pp. 75–82.
DOI: 10.1016/j.chemolab.2011.01.012.

5. Brameier, M. F., Banzhaf, W. (2007). Linear
genetic programming. Springer US. DOI: 10.
1007/978-0-387-31030-5.

6. Brodowsky, U. A., Hougardy, S., Zhong,
X. (2023). The approximation ratio of the
k-opt heuristic for the euclidean traveling
salesman problem. SIAM Journal on
Computing, Vol. 52, No. 4, pp. 841–864.
DOI: 10.1137/21M146199X.

7. Christiansen, H. (1990). A survey of
adaptable grammars. ACM SIGPLAN
Notices, Vol. 25, No. 11, pp. 35–44.
DOI: 10.1145/101356.101357.

8. Cook, W. J., Applegate, D. L., Bixby, R. E.,
Chvátal, V. (2011). The traveling salesman
problem: A computational study. Princeton

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 837–846
doi: 10.13053/CyS-28-2-5026

Grammatical Evolution with Codons Selection Order as Intensification Process 843

ISSN 2007-9737

University Press, Vol. 17. DOI: 10.1515/
9781400841103.

9. Croes, G. A. (1958). A method for solving
traveling-salesman problems. Operations
Research, Vol. 6, No. 6, pp. 791–812.
DOI: 10.1287/opre.6.6.791.

10. Cárdenas-Florido, L., Trujillo, L.,
Hernandez, D. E., Muñoz-Contreras,
J. M. (2024). M5GP: Parallel multidimensional
genetic programming with multidimensional
populations for symbolic regression.
Mathematical and Computational
Applications, Vol. 29, No. 2, pp. 25.
DOI: 10.3390/mca29020025.

11. de-la-Cruz-Echeandı́a, M., de-la-Puente, A.
O., Alfonseca, M. (2005). Attribute grammar
evolution. Artificial Intelligence and Knowledge
Engineering Applications: A Bioinspired
Approach, Springer Berlin Heidelberg,
pp. 182–191. DOI: 10.1007/11499305 19.

12. Fagan, D., O’Neill, M., Galván-López, E.,
Brabazon, A., McGarraghy, S. (2014). An
analysis of genotype-phenotype maps in
grammatical evolution. Esparcia-Alcázar,
A.I., Ekárt, A., Silva, S., Dignum, S.,
Uyar, A.Ş. (eds) Genetic Programming.
EuroGP 2010. EuroGP 2010. Lecture
Notes in Computer Science, Springer,
Berlin, Heidelberg, Vol. 60216021.
DOI: 10.1007/978-3-642-12148-7 6.

13. Gaddam, J., Barca, J. C., Nguyen, T. T.,
Angelova, M. (2023). Grammatical evolution
with adaptive building blocks for traffic light
control. 2023 IEEE Congress on Evolutionary
Computation (CEC), pp. 1–10. DOI: 10.1109/
CEC53210.2023.10254190.

14. Gupt, K. K., Raja, M. A., Murphy, A.,
Youssef, A., Ryan, C. (2022). GELAB – The
cutting edge of grammatical evolution. IEEE
Access, pp. 1–1. DOI: 10.1109/ACCESS.
2022.3166115.

15. Hintze, G. (1966). Automatic programming.
Fundamentals of Digital Machine Computing,
Springer Berlin Heidelberg, pp. 177–211.
DOI: 10.1007/978-3-662-40151-4 7.

16. Holland, J. H. (1992). Adaptation in natural
and artificial systems: an introductory analysis
with applications to biology, control, and
artificial intelligence. MIT Press.

17. Indu, M. T., Shunmuga, V. C. (2024).
Differential evolution ensemble designer.
Expert Systems with Applications: An
International Journal, Vol. 238, No. C.
DOI: 10.1016/j.eswa.2023.121674.

18. Karaboga, D., Ozturk, C., Karaboga,
N., Gorkemli, B. (2012). Artificial bee
colony programming for symbolic regression.
Information Sciences, Vol. 209, pp. 1–15.
DOI: 10.1016/j.ins.2012.05.002.

19. Keijzer, M. (2003). Improving symbolic
regression with interval arithmetic and
linear scaling. Genetic Programming,
Springer, Berlin, Heidelberg, pp. 70–82.
DOI: 10.1007/3-540-36599-0 7.

20. Knuth, D. E. (1968). Semantics of context-free
languages. Mathematical systems theory,
Vol. 2, No. 2, pp. 127–145. DOI: 10.1007/
BF01692511.

21. Korns, M. F. (2011). Abstract expression
grammar symbolic regression. Chapter 7,
Springer New York, pp. 109–128. DOI: 10.
1007/978-1-4419-7747-2 7.

22. Koza, J. R. (1989). Hierarchical genetic
algorithms operating on populations of
computer programs. IJCAI’89: Proceedings
of the 11th international joint conference on
Artificial intelligence, Vol. 1, pp. 768–774.

23. Koza, J. R. (1992). Genetic programming.
Massachusetts Institute of Technology.

24. Koza, J. R. (1994). Genetic programming II:
Automatic discovery of reusable programs,
Vol. 1, The MIT Press. DOI: 10.5555/183460.

25. Koza, J. R. (2010). Human-competitive
results produced by genetic programming.
Genetic Programming and Evolvable
Machines, Vol. 11, pp. 251–284.
DOI: 10.1007/s10710-010-9112-3.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 837–846
doi: 10.13053/CyS-28-2-5026

Andrés Espinal, Marco Aurelio Sotelo-Figueroa, Jorge Alberto Soria-Alcaraz844

ISSN 2007-9737

26. Langdon, W. B. (1998). Genetic programming
and data structures: genetic programming+
data structures= automatic programming!
Springer Science & Business Media. DOI: 10.
1007/978-1-4615-5731-9.

27. Laporte, G., Gendreau, M., Potvin, J. Y.,
Semet, F. (2000). Classical and modern
heuristics for the vehicle routing problem.
International Transactions in Operational
Research, Vol. 7, No. 4, pp. 285–300.
DOI: 10.1016/S0969-6016(00)00003-4.

28. Larrañaga, P., Kuijpers, C., Murga, R. H.,
Inza, I., Dizdarevic, S. (1999). Genetic
algorithms for the travelling salesman
problem: A review of representations
and operators. Artificial Intelligence
Review, Vol. 13, No. 2, pp. 129–170.
DOI: 10.1023/A:1006529012972.

29. Mégane, J., Lourenço, N., Machado,
P., Schweim, D. (2023). The influence
of probabilistic grammars on evolution.
Proceedings of the Companion Conference on
Genetic and Evolutionary Computation,
Association for Computing Machinery,
pp. 611–614. DOI: 10.1145/3583133.
3590706.

30. Nicolau, M., Agapitos, A. (2021). Choosing
function sets with better generalisation
performance for symbolic regression models.
Genetic Programming and Evolvable
Machines, Vol. 22, No. 1, pp. 73–100.
DOI: 10.1007/s10710-020-09391-4.

31. Nordin, P. (1999). Genetic programming III
- Darwinian invention and problem solving.
Evolutionary Computation, Vol. 7, No. 4,
pp. 451–453. DOI: 10.1162/evco.1999.7.4.
451.

32. O’Neil, M., Ryan, C. (2003). Grammatical
evolution. Springer US. DOI: 10.1007/
978-1-4615-0447-4 4.

33. O’Neill, M., Brabazon, A. (2006).
Grammatical differential evolution. IC-AI,
pp. 231–236.

34. O’Neill, M., Ryan, C. (2001). Grammatical
evolution. IEEE Transactions on Evolutionary

Computation, Vol. 5, No. 4, pp. 349–358.
DOI: 10.1109/4235.942529.

35. Ortega, A., de-la-Cruz, M., Alfonseca,
M. (2007). Christiansen grammar evolution:
Grammatical evolution with semantics. IEEE
Transactions on Evolutionary Computation,
Vol. 11, No. 1, pp. 77–90. DOI: 10.1109/TEVC.
2006.880327.

36. O’Neill, M., Brabazon, A. (2004).
Grammatical swarm. Genetic and Evolutionary
Computation–GECCO 2004: Genetic and
Evolutionary Computation Conference,
pp. 163–174.

37. Ryan, C., Collins, J. J., O’Neill, M. O. (1998).
Grammatical evolution: Evolving programs for
an arbitrary language. Genetic Programming:
First European Workshop, pp. 89–96. DOI: 10.
1007/BFb0055930.

38. Ryan, C., O’Neill, M., Collins, J. J.
(2018). Handbook of grammatical evolution.
Springer International Publishing. DOI: 10.
1007/978-3-319-78717-6.

39. Schmid, U. (2003). Automatic programming.
Inductive Synthesis of Functional Programs:
Universal Planning, Folding of Finite
Programs, and Schema Abstraction
by Analogical Reasoning, pp. 99–166.
DOI: 10.1007/978-3-540-44846-4 6.

40. Sotelo-Figueroa, M. A., Hernández-Aguirre,
A., Espinal, A., Soria-Alcaraz, J. A.,
Ortiz-López, J. (2018). Symbolic regression
by means of grammatical evolution with
estimation distribution algorithms as search
engine. Fuzzy Logic Augmentation of Neural
and Optimization Algorithms: Theoretical
Aspects and Real Applications, Springer
International Publishing, pp. 169–177.
DOI: 10.1007/978-3-319-71008-2 14.

41. Sotelo-Figueroa, M. A., Puga-Soberanes,
H. J., Carpio-Valadez, J. M., Fraire-Huacuja,
H. J., Cruz-Reyes, L., Soria-Alcaraz, J. A.
(2014). Improving the bin packing heuristic
through grammatical evolution based on
swarm intelligence. Mathematical Problems in

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 837–846
doi: 10.13053/CyS-28-2-5026

Grammatical Evolution with Codons Selection Order as Intensification Process 845

ISSN 2007-9737

Engineering, Vol. 2014, No. 1, pp. 1–12.
DOI: 10.1155/2014/545191.

42. Tsoulos, I. G., Tzallas, A. (2023). A
feature construction method that combines
particle swarm optimization and grammatical
evolution. Applied Sciences, Vol. 13, No. 14,
pp. 8124. DOI: 10.3390/app13148124.

43. White, D. R., McDermott, J., Castelli, M.,
Manzoni, L., Goldman, B. W., Kronberger,
G., Jaśkowski, W., O’Reilly, U. M.,
Luke, S. (2013). Better GP benchmarks:
Community survey results and proposals.
Genetic Programming and Evolvable
Machines, Vol. 14, No. 1, pp. 3–29.
DOI: 10.1007/s10710-012-9177-2.

44. Zúñiga, B. V., Carpio, J. M.,
Sotelo-Figueroa, M. A., Espinal, A.,
Purata-Sifuentes, O. J., Ornelas, M.,

Soria-Alcaraz, J. A., Rojas, A. (2020).
Exploring random permutations effects
on the mapping process for grammatical
evolution. Journal of Automation, Mobile
Robotics and Intelligent Systems, pp. 65–72.
DOI: 10.14313/JAMRIS/1-2020/8.

45. Zuñiga-Nuñez, B. V., Carpio, J. M.,
Sotelo-Figueroa, M. A., Soria-Alcaraz,
J. A., Purata-Sifuentes, O. J., Ornelas,
M., Rojas-Domı́nguez, A. (2020). Studying
grammatical evolution’s mapping processes
for symbolic regression problems. Intuitionistic
and Type-2 Fuzzy Logic Enhancements in
Neural and Optimization Algorithms: Theory
and Applications, Springer, pp. 445–459.
DOI: 10.1007/978-3-030-35445-9 32.

Article received on 30/01/2024; accepted on 06/05/2024.
*Corresponding author is Marco Aurelio Sotelo-Figueroa.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 837–846
doi: 10.13053/CyS-28-2-5026

Andrés Espinal, Marco Aurelio Sotelo-Figueroa, Jorge Alberto Soria-Alcaraz846

ISSN 2007-9737

