

AbstractMachine learning and computational intelligence

have facilitated the development of recommendation systems for a

broad range of domains. Such recommendations are based on

contextual information that is explicitly provided or pervasively

collected. Recommendation systems often improve decision-

making or increase the efficacy of a task. An obvious application

is a person’s physical health where it is advantageous to increase

the number of healthy cells in the body and destroy cancerous cells

(wherein cancer is your opponent), we can learn how to predict

positive outcomes for such scenarios. Herein we show how

frequent and discriminative subgraph mining can be employed to

analyze a collection of healthcare dataset cases and make

recommendations about sequences of actions that should take, as

well as should not take, be made to increase the chances of a

patient's recovery in the near future. As proof of concept, we

present the results of an experiment that utilizes our strategy for

one particular healthcare dataset, MIMIC.

Index TermsRecommendation systems, graph mining,

frequent subgraph mining, discriminative subgraph mining.

I. INTRODUCTION

The quick expansion of information and development in

communication technology has initiated a new era for

researchers to develop e-health applications that play a major

role in developing and improving healthcare services.

Information growth requires competent and scalable techniques

to generate useful results. Prediction systems were proposed as

a computer-based intelligent technique to deal with the

information problem and product overload.

These systems use knowledge discovery and statistical

methods to recommend items to users. Medical data can have

distinct types of characteristics and may contain various types

of errors, such as missing or noisy data, which occur for a

variety of reasons. For instance, a doctor may not request all

appropriate tests while diagnosing a patient, some personal data

may be neglected by users because of privacy matters, or values

cannot be entered when the data is collected. Archiving

accurate prediction is very challenging with such data, mainly

due to the leak of explicit links between the actual state of the

patients and recorded data.

Improving the accuracy of the prediction or recommendation

system by using collaborative graph mining techniques was the

Manuscript received on 18/09/2023, accepted for publication on 13/02/2024.

Hiba G. Fareed is with the Mathematics Department at Mustansiriyah

University, Baghdad, Iraq (e-mail: hf_math@uomustansiriyah.edu.iq).
Isam A. Alobaidi is with the School of Computer Science and Information

Systems at Northwest Missouri State University, Maryville, MO, USA (e-mail:

ialobaidi@nwmissouri.edu).
Jennifer L. Leopold is with the Department of Computer Science at Missouri

University of Science and Technology, Rolla, MO 65409, USA (e-mail:

leopoldj@mst.edu).

primary goal of this work. This approach does not require any

information other than the ICD-9-CM code to predict the

medical conditions in order to assist physicians and patients.

While clustering algorithms are commonly used for tackling

similar problems, we chose the graph mining techniques due to

the following issues associated with the clustering techniques:

the need for data preparation, proximity measures, a method for

handling outliers, and finally, reliance on a priori knowledge

and user-defined parameters [1, 2, 3]. On the other hand, graph

mining techniques are superior to clustering algorithms in terms

of time complexity and are promising tools in data

mining research.

In this study, we test the hypothesis that predictive analytics

can be employed to examine a collection of patients’ cases and

make recommendations to increase the possibility of recovery.

Using a database of patients’ symptoms, we model each of

those symptoms as a directed graph, and use frequent subgraph

mining and discriminative subgraph mining, respectively, to

look for patterns of symptoms that occurred in life cases; these

form the basis of our recommendations for actions that a

physician should take to keep the patient a live. Similarly, we

look for patterns of symptoms that occurred in death cases;

those become the basis of our recommendations for actions that

a physician should not take to preserve a patient's life.

We test the accuracy of our two methods by partitioning our

database of patients’ cases into training and test datasets, and

testing for the occurrence of true positives, true negatives, false

positives, and false negatives. We also compare these two

methods against each other, in terms of error rate of predictions.

Scalability is a required feature of any method or system. The

existence of this feature in our method made it possible to

extend our proposed research to include the possibility of

dealing with dynamic graphs, although our current scope of

research deals with static graphs only. The use of parallel or

distributed computing instead of sequential computing could be

one of the proposed solutions for the future.

The organization of this paper is as follows. Section 2

provides a brief discussion of the main topics in this paper,

including health recommendation systems and data mining

techniques used in predictive analytics. The particular

algorithms that we used for frequent subgraph mining and

Layth M. Almashhadani is with the Department of Computer Engineering,

Al Farabi University College, Baghdad, Iraq (e-mail:

layth.muhammad@alfarabiuc.edu.iq).
Nathan W. Eloe is with the School of Computer Science and Information

Systems at Northwest Missouri State University, Maryville, MO, USA (e-mail:

nathane@nwmissouri.edu).

1 Graph Mining Healthcare Approach:

Analysis and Recommendation
Hiba G. Fareed, Isam A. Alobaidi, Jennifer L. Leopold, Layth M. Almashhadani, Nathan W. Eloe

9 POLIBITS, vol. 66(1), 2024, pp. 9–17https://doi.org/10.17562/PB-66(1)-2

IS
S

N
 2395-8618

discriminative subgraph mining are explained in more depth in

Section 3. A description of the MIMIC data that we used for

testing our method is provided in Section 4. Our experimental

method and results are discussed in Section 5. A summary of

this research and consideration of future work is discussed in

Section 6.

II. BACKGROUND

In this section, the studies closest to the focus of our paper

are reviewed, where researchers have developed tools for

helping doctors and patients. In [4], the authors introduced a

health recommendation system as a general predictive model to

assess disease risks. The authors built a collaborative

assessment and recommendation engine called CARE that

relies on the collaborative filtering (CF) method for providing

recommendations to patients by collecting preferences from

users that have similar behaviors.

The utilized CF technique is derived from the vector

similarity algorithm, which determines the similarity score

based on the row vector. In another study [5], a hybrid

recommendation system was proposed that combines CF with

clustering on demographics of users with a weighted scheme.

In this proposed system, item similarity and user clusters are

computed offline, which makes the solution very scalable. In

[6], CF was combined with techniques adopted from marketing

domains and applied for the prediction of diseases.

The authors consider the inadequate medical history and

locate other patients similar to a given person, who then vote on

every disease the person has not yet had based on their own

medical histories. The main limitations of the CF method are

the cold start, sparsity, and scalability problems, which

collectively affect the accuracy of the method.

The study presented in [7] has shown the application of the

decision tree classification approach. Random forest was used

to analyze and segment the patients’ records in training data into

distinguished and related groups of classes based on the

observed diagnosis scales. Ensembles of decision trees, such as

random forests, are very fast to train, but quite slow to create

predictions once trained.

More accurate ensembles require more trees and thus operate

more slowly. Another approach for disease prediction that

combines clustering, Markov models, and association analysis

techniques is proposed in [8]. The main weakness of Markov

networks is their inability to represent induced and non-

transitive dependencies; two independent variables will be

directly connected by an edge merely because some other

variable depends on both. As a result, many useful

independencies go unrepresented in the network.

A. Data Mining Techniques Used in Predictive Analytics

Utilizing mathematical modeling, the field of predictive

analytics examines past examples of life and death to determine

the variables that lead to recovery outcomes and can be used to

make predictions about future actions. It has been used widely

in the financial and insurance sectors.

Here we briefly discuss some of the most common types of

data mining methods used for predictive analytics.

Regression analysis: This method analyzes the relationship

between a dependent variable and a set of independent

variables. For healthcare data, the dependent variable would

likely be the outcome of the cases (i.e., life or death), and the

independent variables would be the various possible actions.

Rule induction: Rule induction methods such as association

rule mining seek to find relationships between variables in the

dataset [9]. By applying association rule mining on only the life

cases, we could identify some actions that the physician did to

save the patients. Similarly, by mining the death cases, we could

find some actions common to losing patients.

Decision trees: Decision trees are most often used for

classification and can be thought of as a graphical depiction of

a rule; each branch of a decision tree can be thought of as a

separate rule consisting of a conjunction of the attribute

predicates of nodes along that branch [9]. One approach would

be to construct decision trees from the life cases and death

cases, respectively.

Clustering: Clustering is a way to categorize a collection of

instances in order to look for patterns; groups are formed to

maximize similarity between the instances within a group and

to maximize dissimilarly between instances in different groups

[9]. Health data are already clustered into two groups: life and

death. For the purpose of analyzing successful (and

unsuccessful) actions, we would likely attempt to form clusters

of action sequences.

Neural networks: Neural networks are composed of a series

of interconnected nodes that map a set of inputs into one or

more outputs [9]. The interconnections between inputs (which,

for the health data, could be actions in the case) could be

determined based on an analysis of the patients' cases.

Most of the above methods would be computationally

prohibitive, and would probably not yield useful results, for the

MIMIC health data [25] unless we employed some type of data

reduction mapping, which subsequently could result in loss of

useful, specific information.

B. Subgraph Mining

Many problems can be modelled with graphs, wherein

entities are represented as vertices and relationships between

entities are represented as edges. When the relationship

between two vertices has some semantic distinction of a

predecessor and a successor, the edges are directed and hence

the graph is considered directed. The MIMIC dataset can be

modelled as a directed graph where each action (e.g.,

symptoms) is represented by a vertex and an edge represents

two consecutive actions that were made. By necessity, each

vertex also must be identified by which physician performed

that action. The actions do not form a strictly linear sequence

because an action can generate multiple actions; for example,

the attending physician may decide to perform a quick surgical

intervention while giving the patient a group of medications at

the same time, each of which becomes a new vertex.

Subgraph mining is a technique used to discover a particular

pattern in graphs. Two techniques will discuss here:

10POLIBITS, vol. 66(1), 2024, pp. 9–17 https://doi.org/10.17562/PB-66(1)-2

Hiba Ghassan Fareed, Isam Abdulmunem Alobaidi, Jennifer Leopold, et al.
IS

S
N

 2395-8618

 Frequent Subgraph Mining. Given a single (directed or

undirected) graph, it can be useful to know which

subgraphs occur at least 𝑛 times where 𝑛 is a user-specified

threshold for frequency. Similarly, given a collection of

graphs and a frequency threshold 𝑛, it may be important to

know which subgraphs occur in at least 𝑛 of those graphs.

The process of answering this question is called frequent

subgraph mining. Several methods for frequent subgraph

mining were presented in [10,11,12,13]. Amongst many of

the frequent subgraph mining algorithms that have been

developed, computationally expensive extension/joining

operations (to create larger candidate subgraphs from

smaller frequent subgraphs) and false positive pruning (to

reduce the search space) have been the biggest challenges

that researchers have tried to address.

 Discriminative Subgraph Mining. Discriminative subgraph

mining seeks to find a subgraph that appears in one

collection of graphs but does not appear in another

collection of graphs. This approach has been used to study

several problems including identifying chemical functional

groups that trigger side-effects in drugs [14], classifying

proteins by amino acid sequence [15], and identifying bugs

in software [16,17,18]. Various discriminative subgraph

mining algorithms are given in [16,17,18,19,20], some of

which are tailored for particular problems; due to space

limitations, they are not discussed in detail here.

III. METHODOLOGY

In this section, we discuss the two graph mining methods that

we utilized for the healthcare predictive recommendation

system.

A. Frequent Subgraph Mining

Format and save your graphic images using a suitable

graphics processing program that will allow you to create the

images as PostScript (PS), Encapsulated PostScript (EPS), or

Tagged Image File Format (TIFF), sizes them, and adjusts the

resolution settings. If you created your source files in one of the

following you will be able to submit the graphics without

converting to a PS, EPS, or TIFF file: Microsoft Word,

Microsoft PowerPoint, Microsoft Excel, or Portable Document

Format (PDF).

1) Preliminaries

Let 𝒢 = {𝐺1, 𝐺2, … , 𝐺𝑛} be a set of linear directed graphs which

represents the historical data. Each 𝐺𝑖 represents a single

symptom, such that 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖) where 𝑉𝑖 represents a node

labeled as a symptom code of a patient, while an edge in 𝐸𝑖

represents two consecutive symptoms. A graph 𝑇 = (𝑉𝑇 , 𝐸𝑇) is

a subgraph of 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖) 𝑖𝑓𝑓 𝑉𝑇 ⊆ 𝑉𝐺𝑖
, 𝐸𝑇 ⊆ 𝐸𝐺𝑖

.

Definition 1. Let 𝑇 = (𝑉𝑇 , 𝐸𝑇) be a subgraph of a graph 𝐺𝑖 =
(𝑉𝑖 , 𝐸𝑖). A subgraph isomorphism of 𝑇 to 𝐺𝑖 is an injective

function 𝑓: 𝑉𝑇 ⟶ 𝑉𝐺𝑖
 satisfying (𝑓(𝑢), 𝑓(𝑣)) ∈ 𝐸𝐺𝑖

 for all

edges (𝑢, 𝑣) ∈ 𝐸𝑇 . Intuitively, a subgraph isomorphism is a

mapping from 𝑉𝑇 to 𝑉𝐺𝑖
 such that each edge in 𝐸𝐺𝑖

 is mapped to

a single edge in 𝐸𝑇 and vice versa.

Problem 1. Given a set of graphs 𝒢, the frequent subgraph

isomorphism mining problem is defined as finding all

subgraphs T in G such that tG(T) ≥ τ, where tG(T) is the

number of graphs in G that contain T and τ is the user-specified

threshold.

Problem 2. Given a set of graphs 𝒢 such that each Gi is divided

into three phases Gi1, Gi1, Gi3 and a frequent subgraph T, the

frequent phase mining problem is defined as finding all

subgraphs T in Gij such that tGij
(T) ≥ τ, where τ is the user-

specified threshold.

In our case, problem (2) counts the actual frequency (i.e.,

occurrences) of each subgraph provided that it is greater than or

equal to 𝜏. However, this may not be useful in various cases [13

and 21], while others necessitate the exact number of

occurrences (like graph indexing in [22]). The choice of three

for number of phases was an arbitrary decision influenced by

board games such as chess that have traditionally been analyzed

in terms of the moves made in the beginning, middle, and end

of the game.

2) Electronic GraMi Algorithm

For the purpose of generating candidate subgraphs, a variety

of frequent subgraph mining and subgraph extension algorithms

have been developed, as discussed in previous work [12,22,23].

In particular, GraMi [23] is one of the most efficient methods

and is the foundation for the work presented in this paper. The

key ideas behind GraMi are briefly outlined here. Algorithm 1

is used to find a set of all frequent edges fEdges in the collection

of graphs = {𝐺i=1,...,n}. All of these frequent edges have support

greater than or equal to a user-specified threshold 𝜏. Because of

the anti-monotone property, only frequent edges are considered

when finding the frequent subgraphs.

Algorithm 1 Frequent Subgraph Mining - 𝐹𝑆𝑀

Input 𝒢 = {𝐺𝑖=1,…,𝑛} and frequency threshold 𝜏

Output All 𝑓𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 𝑆(𝐺𝑖) with the support ≥ 𝜏

 1: 𝑓𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 ⟵ 𝜙
 2: 𝐶𝑜𝑢𝑛𝑡 = 0
 3: for each edge 𝑒𝐺𝑖

 do

 4: if 𝑒𝐺𝑖
= 𝑒𝐺𝑖+1

 then

 5: 𝐶𝑜𝑢𝑛𝑡 + +
 6: end-if
 7: if 𝐶𝑜𝑢𝑛𝑡 ≥ 𝜏 then
 8: 𝑓𝐸𝑑𝑔𝑒𝑠 ⟵ 𝑓𝐸𝑑𝑔𝑒𝑠 ⋃ 𝑒𝐺𝑖

 9: end-if

10: end-for

11: for each 𝑒 ∈ 𝑓𝐸𝑑𝑔𝑒𝑠 do

12: 𝑓𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 ⟵
 𝑓𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 ⋃ 𝑆𝑢𝑏𝐸(𝑒, 𝒢, 𝜏, 𝑓𝐸𝑑𝑔𝑒𝑠)

13: Remove 𝑒 from 𝒢 and , 𝑓𝐸𝑑𝑔𝑒𝑠

14: end-for
15: return 𝑓𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠

Algorithm 2 is given each frequent edge to extend it to a new

frequent subgraph. This is done by incorporating that edge with

11 POLIBITS, vol. 66(1), 2024, pp. 9–17https://doi.org/10.17562/PB-66(1)-2

Graph Mining Healthcare Approach: Analysis and Recommendation
IS

S
N

 2395-8618

another subgraph. All extensions created in previous iterations

are excluded by utilizing the DFScode canonical form that was

introduced for gSpan [23]. The set Candidate in Algorithm 2

will include all the new subgraph extensions that had not been

considered in prior iterations.

Algorithm 2 Subgraph Extension – 𝑆𝑢𝑏𝐸

Input 𝑓𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 𝑆, 𝑓𝐸𝑑𝑔𝑒𝑠 and frequency threshold 𝜏

Output All 𝑆𝑢𝑏𝑛𝑒𝑤 with the support ≥ 𝜏

 1: 𝑆𝑢𝑏𝑛𝑒𝑤 ⟵ 𝜙
 2: 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ⟵ 𝜙
 3: for each 𝑒 ∈ 𝑓𝐸𝑑𝑔𝑒𝑠 and 𝑛 ∈ 𝑓𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 do

 4: if 𝑒 fit to extend 𝑛 then

 5: Generate a new subgraph 𝐸𝑥𝑡𝑆

 6: if 𝐸𝑥𝑡𝑆 exist in 𝒢 and not generated before then

 7: 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ⟵ 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ⋃ 𝐸𝑥𝑡𝑆
 8: Else

 9: remove 𝐸𝑥𝑡𝑆

10: end-if

11: end-if

12: end-for

13: for each 𝐸𝑥𝑡𝑆 ∈ 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 do
14: if 𝐸𝑥𝑡𝑆 count in 𝒢 ≥ 𝜏 then

15: 𝑆𝑢𝑏𝑛𝑒𝑤 ⟵
 𝑆𝑢𝑏𝑛𝑒𝑤 ⋃ 𝑆𝑢𝑏𝐸(𝐸𝑥𝑡𝑆, 𝒢, 𝜏, 𝑓𝐸𝑑𝑔𝑒𝑠)

16: end-if
17: End

18: return 𝑆𝑢𝑏𝑛𝑒𝑤

In subsequent steps, any new subgraph extension within the

set Candidate that does not meet the support threshold 𝜏

requirement will be discarded. If any of those subgraphs had

been extended, it would produce a new non-frequent subgraph

according to the anti-monotonic property.

3) Using Frequent Subgraphs to Make Recommendations

In this section we discuss the algorithms that we utilized in

order to mine the patient dataset for frequent subgraphs and

build a recommendation system. The task of finding the number

of occurrences for each subgraph was carried out using

Algorithm 3.

Algorithm 3 Exact Subgraph Frequency

Input 𝒢 = {𝐺𝑖=1,…,𝑛}, 𝑓𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠 𝑆 and frequency threshold 𝜏

Output All the Exact Frequent Subgraph with their frequency

 1: 𝐶𝑜𝑢𝑛𝑡 = 0
 2: for 𝑖 = 1 ⟶ all graphs in (𝑓𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠) do

 3: 𝑓𝑟𝑞 = 0

 4: for 𝑗 = 1 ⟶ all graphs in (𝒢) do

 5: if findnode (𝐺𝑗 , 𝑓𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠𝑖) ≠ 0 do

 6: 𝑡𝑒𝑚𝑝 ⟵ dfsearch (𝐺𝑗 , 𝑓𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠𝑖)

 7: if 𝑡𝑒𝑚𝑝 ≥ 𝑠𝑖𝑧𝑒(𝑓𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠𝑖)

 & 𝑖𝑠𝑖𝑠𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐(𝑓𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠𝑖 , 𝐺𝑗) do

 8: 𝑓𝑟𝑞 + +
 9: end-if

10: end-if

11: end-for

12: if 𝑓𝑟𝑞 ≥ 𝜏 do
13: 𝑐𝑜𝑢𝑛𝑡 + +
14: 𝐸𝑥𝑎𝑐𝑡𝐹𝑆𝐺(𝑐𝑜𝑢𝑛𝑡) ⟵ 𝑓𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑠𝑖
15: end-if

16: end-for

17: return 𝐸𝑥𝑎𝑐𝑡𝐹𝑆𝐺

The mechanism for node-finding was used for matching the

first node of a candidate subgraph with its occurrence in the

original dataset. The objective of this process was to determine

the starting point for conducting a depth-first search

(DFSearch) to find all similar subgraphs in the recovery (or not

recovery) graph collection. The expansion process will be done

by adding new nodes that have met the threshold condition

gradually. This process will contribute in maintaining the

extracted subgraphs and avoiding recomputing everything from

scratch. These results were stored temporarily in a temp set to

compute their replication in the subsequent steps, and then the

final result was placed within ExactFSG set.

B. Discriminative Subgraph Mining

The algorithm we employed for discriminative subgraph

mining is similar to the approach taken in [17,18,26], but does

not employ any heuristics specific to healthcare cases. Although

we ran it sequentially, it easily lends itself to parallel or

distributed processing.

Let 𝑅+ and 𝑅− represent two sets of (undirected or directed)

graphs for which we want to find a discriminative subgraph;

that is, we want to find a subgraph that appears in the graphs in

𝑅− and does not appear in the graphs in 𝑅+, or vice-versa. We

shall refer to 𝑅+ as the positive graphs and 𝑅− as the negative

graphs although this naming convention has no direct semantic

correlation to the classification of the graphs in those respective

sets (e.g., ‘recovery’ does not necessarily mean positive).

Algorithm 4 𝐹𝑖𝑛𝑑𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ (𝑅+, 𝑅−, 𝛼, 𝛽)

𝑅+: set of positive graphs

𝑅−: set of negative graphs

𝛼 : percentage of graphs that discriminative subgraph need not

be present in 𝑅+ when relaxing conditions

𝛽 : percentage of graphs that discriminative subgraph need not

be present in 𝐶− when relaxing conditions

 1: remove non-discriminative edges from graphs in 𝑅+

and 𝑅−;

 2: 𝐺 = 𝐶𝑟𝑒𝑎𝑡𝑒𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ(𝑅− , 𝑅+);
 3: if 𝐺 is empty then

 4: 𝐺 =
 𝑅𝑒𝑙𝑎𝑥𝑒𝑑𝐶𝑟𝑒𝑎𝑡𝑒𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ(𝑅− , 𝑅+, |𝑅+| ∗ 𝛼);

 5: if 𝐺 is empty then

 6: 𝐺 = 𝐶𝑟𝑒𝑎𝑡𝑒𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ(𝑅+ , 𝑅−);
 7: if 𝐺 is empty then

 8: 𝐺 =
 𝑅𝑒𝑙𝑎𝑥𝑒𝑑𝐶𝑟𝑒𝑎𝑡𝑒𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ(𝑅+ , 𝑅−, |𝑅−| ∗ 𝛽);

 9: end-if

10: end-if

11: end-if

12: return 𝐺

The function 𝐹𝑖𝑛𝑑𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ (Algorithm 4)

first removes non-discriminative edges from the graphs in both

sets; since such edges appear in the graphs in both sets, they

cannot be used to differentiate the graphs in the those sets.

𝐹𝑖𝑛𝑑𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ then calls

𝐶𝑟𝑒𝑎𝑡𝑒𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ (Algorithm 5) to try to find a

subgraph that is common to all graphs in 𝑅−, but not common

to all the graphs in 𝑅+. If we are unable to find such a graph,

then the function 𝑅𝑒𝑙𝑎𝑥𝑒𝑑𝐶𝑟𝑒𝑎𝑡𝑒𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ

(Algorithm 6) is called, which relaxes the requirement that the

12POLIBITS, vol. 66(1), 2024, pp. 9–17 https://doi.org/10.17562/PB-66(1)-2

Hiba Ghassan Fareed, Isam Abdulmunem Alobaidi, Jennifer Leopold, et al.
IS

S
N

 2395-8618

subgraph we seek not be present in all of the 𝑅+ graphs; instead

the subgraph only has to not be present in 𝛼 ∗ |𝑅+| of the 𝑅+

graphs, where 𝛼 is a user-specified parameter (our default is

𝛼 = 0.5). 𝐹𝑖𝑛𝑑𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ and

𝐶𝑟𝑒𝑎𝑡𝑒𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ use a function called Augment;

this function takes a subgraph 𝐺 and adds to it an edge (and

possibly a node) such that the source vertex exists in 𝐺, and the

edge (and destination node) exists in all graphs in subgraph

collection 𝑆1. In this way, a subgraph with an additional edge

that exists in all elements of 𝑆1 is created and considered by the

algorithm.

Algorithm 5 𝐶𝑟𝑒𝑎𝑡𝑒𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ (𝑆1, 𝑆2)

𝑆1: set of graphs

𝑆2: set of graphs

 1: 𝐹𝑟𝑒𝑞𝑆𝐺 = queue of 1-edge subgraphs in 𝑆1;

 2: while 𝐹𝑟𝑒𝑞𝑆𝐺 is not empty do

 3: 𝐺 = 𝐹𝑟𝑒𝑞𝑆𝐺.dequeue ();
 4: if 𝐺 is not in any graph in 𝑆2then

 5: return (𝐺);

 6: end-if

 7: NewGraphs = Augment (𝐺);

 8: for each graph 𝐺′ in NewGraphs do

 9: 𝐹𝑟𝑒𝑞𝑆𝐺.enqueue (𝐺′);

10: end-for

11: end-while

12: return (empty graph)

Algorithm 6 𝑅𝑒𝑙𝑎𝑥𝑒𝑑𝐶𝑟𝑒𝑎𝑡𝑒𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ (𝑆1, 𝑆2, 𝛾)

𝑆1: set of graphs

𝑆2: set of graphs

 𝛾 : threshold for number of graphs discriminative subgraph

must be present in

 1: 𝐹𝑟𝑒𝑞𝑆𝐺 = queue of 1-edge subgraphs in 𝑆1;

 2: while 𝐹𝑟𝑒𝑞𝑆𝐺 is not empty do

 3: 𝐺 = 𝐹𝑟𝑒𝑞𝑆𝐺.dequeue ();
 4: if 𝐺 is in < 𝛾 graph in 𝑆2then

 5: return (𝐺);

 6: end-if
 7: NewGraphs = Augment (𝐺);

 8: for each graph 𝐺′ in NewGraphs do

 9: 𝐹𝑟𝑒𝑞𝑆𝐺.enqueue (𝐺′);

10: end-for

11: end-while

12: return (empty graph)

If we still fail to find a discriminative subgraph, then the

difference likely does not involve edges that are in all graphs in

𝑅− and not in graphs in 𝑅+, but rather involves edges in the 𝑅+

graphs that are not in the 𝑅− graphs. Thus, we again call

𝐶𝑟𝑒𝑎𝑡𝑒𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ, but reverse the order of the

parameters (𝑅+ and 𝑅−) from our previous call. If we still fail

to find a discriminative subgraph, we again call

𝑅𝑒𝑙𝑎𝑥𝑒𝑑𝐶𝑟𝑒𝑎𝑡𝑒𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ (Algorithm 6) and

look for a subgraph that only has to not be present in 𝛽 ∗ |𝑅−|
of the 𝑅− graphs, where 𝛽 is a user-specified parameter (our

default is 𝛽 = 0.5).

It is possible that the resulting discriminative graph will be

disconnected. Additionally, it could be the case that multiple

subgraphs could qualify as a discriminative subgraph. The

algorithm addresses both of these cases by returning the

maximal discriminative subgraph; this result may be

disconnected and will include all possible discriminative edges.

It should be noted that it also is possible that our algorithm will

not find any subgraph that meets the discriminative conditions.

This could occur if the requirement that at least 𝛼 (𝛽) of the

graphs in 𝑅−(𝑅+) must have at least one edge in common has

not been satisfied.

The computational complexity of the process is dependent

upon the number of graphs in each collection and the number

of edges in each graph. As specified in line 1 of

𝐶𝑟𝑒𝑎𝑡𝑒𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑣𝑒𝐺𝑟𝑎𝑝ℎ, we begin by examining each

single edge from each graph in one of the graph collections.

However, in lines 7-9 of that algorithm, we potentially build

larger subgraphs that must be searched for; this is the subgraph

isomorphism problem, which is NP-complete.

IV. DATA DESCRIPTION

Medical Information Mart for Intensive Care (MIMIC) [25]

is online medical data provided critical care data for over

40,000 patients admitted to intensive care units. MIMIC is

made available largely through the work of researchers at the

MIT Laboratory for Computational Physiology and

collaborating research groups. In this study, a dataset of 46520

patients involving 2 cases, 30761 for life diagnoses ICD and

15759 for death diagnoses ICD, was obtained for diagnosed

ICD patients. Each of these cases contained the sequence of

diagnoses performed by each of two cases, with a designation

of which patient is still alive. Each diagnosis in the dataset was

encoded with 3-5 digits. Certain digits represented the patient

ID, and other digits represented a counter (the number of times

a particular patient presents with the same diagnosis).

V. EXPERIMENTAL EVALUATION

In this section, we discuss the details of an experiment we

conducted to test the hypothesis that predictive analytics,

specifically frequent and discriminative subgraph mining, can

be employed to examine a collection of patients' diagnoses and

make recommendations as to what physician should do, and

should not do, in order to increase the chances of making them

recover in the near future.

A. Experimental Setup

We analyzed each patient-specific diagnosis group in one

phase; the total number of diagnoses for each patient (by both

the life diagnoses and death diagnoses) ranged from 6 to 358.

For each phase analyzed, 80% of the data were used for training

and the remaining 20% were used for testing with 10-fold cross-

validation. A random number generator

(www.random.org/lists/) was used to determine which patients

were assigned to each partition (with no duplication). This

process was repeated ten times for each phase in order to avoid

any bias during the measure of error rate. Accuracy was used to

evaluate the closeness of the measured value to the true value.

Equation 1 is the mathematical formula of accuracy where 𝑇𝑃

is true positive, 𝑇𝑁 is true negative, 𝐹𝑃 is false positive, and

𝐹𝑁 is false negative:

13 POLIBITS, vol. 66(1), 2024, pp. 9–17https://doi.org/10.17562/PB-66(1)-2

Graph Mining Healthcare Approach: Analysis and Recommendation
IS

S
N

 2395-8618

http://www.random.org/lists/

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 . (1)

If a recommendation for what should be done to recover

(subgraph) was found in one of the life graphs in the test

partition, it was counted as a true positive (𝑻𝑷); if instead that

recommendation (subgraph) was found in one of the death

graphs in the test partition, it was counted as a false positive

(𝑭𝑷). If a recommendation for what should not be done to avoid

not recover (subgraph) was found in one of the death graphs in

the test partition, it was counted as a true negative (𝑻𝑵); if

instead that recommendation (subgraph) was found in one of

the life graphs in the test partition, it was counted as a false

negative (𝑭𝑵). The error rate was calculated as 𝟏 – 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚,

and was averaged over the ten iterations of the 10-fold cross

validation. For each phase “1, 2, and 3” of the dataset cases, we

used 10-fold cross validation. Ten partitions were created, each

one contained 4652 cases; 10 iterations were run in those cross

validations. By “cases” we mean both the life and death for that

dataset cases.

B. Experimental Results

In this section, we present the results of analyzing the MIMIC

dataset using both frequent subgraph mining and discriminative

subgraph mining. The algorithms of frequent subgraph mining

presented in Section 3.1 were (collectively) implemented in

MATLAB and Java. The algorithms of discriminative subgraph

mining presented in Section 3.2 were implemented in Python

3.7. A combination of Python programs and bash scripts were

created for data file conversions and batch program executions.

Our experiments were executed on an Intel(R) Core (TM) i7-

6700 CPU@3.40GHz computer with 32GB memory.

1) FSM - Experimental Results

Tables 1 and 2, show some of the experimental results of

frequent subgraph mining using a threshold of 10 for the life

and death datasets consisting of 46520 patients diagnosed. The

first and second columns show the diagnoses in the frequent

subgraphs with their number of occurrences from the entire

dataset, respectively. The third column in each table is a

classification of the majority of that subgraph’s actions; we

classified that diagnosis actions as either recovered or not

recovered (of an entity in the MIMIC dataset space). These

results were obtained by performing 10-fold cross-validation,

repeated ten times. Each time, for the 46520-case dataset,

41868 cases were selected randomly (without duplication) for

training, and the remaining 4652 cases were used for testing.

For the MIMIC dataset, 809,356 frequent subgraphs were

found that constituted “should do to recover” recommendations

and 265,722 frequent subgraphs were found that represented

“should not do to not recover” recommendations in phase 1.

This number decreased in phase 2 to 472,535 frequent

subgraphs were found that represented “should do”

recommendations and 93,321 frequent subgraphs were found

that characterized “should not do” recommendations. For the

final phase of MIMIC, 108,271 frequent subgraphs were found

that characterized “should do” recommendations; this was an

58.4% decrease from the number found in phase 1 and an 39.7%

decrease from the number found in phase 2. In this phase,

23,545 frequent subgraphs were found that represented “should

not do” recommendations; this was an 35.2% decrease from the

number of such subgraphs found in phase 1 and an 25.3%

decrease from the number found in phase 2.

The size ranged from two nodes with one edge to one

hundred and seventy-seven nodes with one hundred and

seventy-six edges in the MIMIC dataset. All of the two-node

subgraphs were ignored because of the limited information they

provide for the recommendation objective (i.e., only two

diagnose) compared to larger subgraphs. Frequent subgraphs

that were found in the life cases graphs indicate symptoms that

are recommended for physician to accept, whereas frequent

subgraphs that were found in the death cases graphs indicate

symptoms that are recommended that physician should avoid.

The benefit of the counter attached to each symptom reflects

the relative number of times had appeared that type of

symptoms in that case. Characterizing the actions, such as

recover or not recover, gives a general notion of the strategy the

physician is employing in that sequence and would facilitate

mapping one case’s actions to another’s.

Tables 3 show the average error rate for each of the cross-

validation tests for each phase, as well as the average error rate

over each phase’s 10 tests for MIMIC, respectively.

TABLE I

LIFE DATA OF FSM – MIMIC DATASET

Life cases Subgraph Frequency Classification

40391003 2851000 V4511001 V4582012 53 recover

V433003 412012 4241008 4280008 42 no action

82121001 82300001 E8217002 95892001 101 not recover

2851000 V4511001 E8217002 V433004 68 no action

TABLE II

DEATH DATA OF FSM – MIMIC DATASET

Death cases Subgraph Frequency Classification

2948022 78701001 2449001 V4501012 71 no action

E9352002 72141002 2148003 V5865003 39 not recover

V290003 V502005 V290004 V053012 59 not recover

4109002 V1007001 40390003 V290004

E8780001

63 no action

TABLE III

CROSS-VALIDATION TEST RESULTS OF FSM – MIMIC DATASET

Test No. Phase 1 Avg.

Error Rate

Phase 2 Avg.

Error Rate

Phase 3 Avg.

Error Rate

1 49.52% 32.16% 18.23%

2 52.93% 42.52% 13.63%

3 51.24% 40.61% 12.55%

4 55.13% 40.85% 14.32%

5 49.55% 39.12% 11.98%

6 50.94% 39.66% 14.44%

7 55.82% 39.88% 15.17%

8 48.59% 41.25% 11.82%

9 51.64% 38.22% 11.56%

10 49.66% 39.93% 13.54%

Avg. 51.50% 39.42% 13.72%

14POLIBITS, vol. 66(1), 2024, pp. 9–17 https://doi.org/10.17562/PB-66(1)-2

Hiba Ghassan Fareed, Isam Abdulmunem Alobaidi, Jennifer Leopold, et al.
IS

S
N

 2395-8618

The resulting predictive accuracy was not good for frequent

subgraph mining; in general, frequent subgraphs can have very

low frequencies at times and high frequencies at other times.

The collective recommendations (for actions that should be

made and actions that should not be made) were accurate

approximately 51.50%, 39.42%, and 13.72% of the time for

phases 1, 2, and 3 of MIMIC, respectively. We attribute this

increase in the error rate to the increase in the number of recover

frequent subgraphs found in the death dataset and the not

recover frequent subgraphs found in the life dataset.

2) DSM - Experimental Results

Tables 4 show the average error rate for each of the cross-

validation tests for each phase, as well as the average error rate

over each of the phase 10 tests for MIMIC, respectively. The

resulting predictive accuracy was good, considering that, in

general, discriminative subgraphs can have very low

frequencies. The collective recommendations (for action that

should be made and action that should not be made) had error

rates of approximately 13.37%, 8.79%, and 1.53% of the time

for phases 1, 2, and 3 of MIMIC, respectively. We attribute this

decrease in the error rate to the decrease in the number of

recover discriminative subgraphs found in the death dataset and

the not recover discriminative subgraphs found in the

life dataset.

For phase 1 of the MIMIC dataset, when testing all pairs of

2 life and 2 death graphs, 92,436 discriminative subgraphs were

found that constituted “should do to recover” recommendations

and 32,366 discriminative subgraphs were found that

represented “should not do to not to recover” recommendations.

The average size of the “should do” recommendation subgraphs

was 26 edges; the smallest had 1 edge and the largest had 151

edges. The average size of the “should not do” recommendation

subgraphs was 21 edges; the smallest had 1 edge and the largest

had 133 edges.

The situation was not similar in phase 2 of MIMIC, where

there were about 42% less than the respective numbers of

subgraphs found in phase 1. When testing all pairs of 2 life and

2 death graphs, 43,636 discriminative subgraphs were found

that represented “should do” recommendations and 16,441

discriminative subgraphs were found that characterized “should

not do” recommendations. This is not surprising as the number

(and order) of different actions that a physician could (and

likely did) make increased at this point, thereby reducing the

number of graphs that had edges in common and could meet the

criteria of FindDiscriminativeGraph. The average size of the

“should do” recommendation subgraphs was 19 edges, which

was only slightly smaller than what had been found in phase 1;

the smallest had 1 edge and the largest had 121 edges. The

average size of the “should not do” recommendation subgraphs

was 16 edges; the smallest had 1 edge and the largest had

93 edges.

In the final phase of MIMIC, 21,311 discriminative

subgraphs were found that characterized “should do”

recommendations; this was a 47.2% decrease from the number

found in phase 1 and a 23% decrease from the number found in

phase 2.

In this phase, 9,3911 discriminative subgraphs were found

that represented “should not do” recommendations; this was an

50.8% decrease from the number of such subgraphs found in

phase 1 and a 29% decrease from the number found in phase 2.

The average size of the “should do” recommendation

subgraphs was 18 edges; the smallest had 1 edge and the largest

had 89 edges. The average size of the “should not do”

recommendation subgraphs was 14 edges, which is close to the

average size between what was seen for phases 1 and 2; the

smallest had 1 edge and the largest had 86 edges.

Instead of looking at all the result subgraph

(recommendations), the physician should be able to view only

the top k “should” and “should not do” subgraphs, where k is a

physician-specified parameter. For example, among the top ten

frequently recommended “should do” subgraphs in phase 1 of

MIMIC, 12 had 6 edges (i.e., 7 actions) and 18 contained 6-7

edges (i.e., 7-8 actions).

In contrast, 8 of the 10 most frequent “should not do”

subgraphs contained 5-6 edges (i.e., 6-7 actions) and 2

contained only 1 edge (i.e., 2 actions). It should be noted that

the “should” and “should not do” subgraphs can vary in the

number of edges they contain; thus, we may not be able to

provide as much information about what should not do as we

can say about what should do (or vice versa).

The type of action can have an important role in

characterizing a recommended subgraph (i.e., predominantly

recover, not recover, or no action). In the MIMIC dataset,

creation of territory files likely is considered a recover action.

Another observation that can be made from discriminative

subgraphs is a counter that is associated with both of these types

of actions. For each patient, the counter for each type of action

begins at 1 and is incremented by 1 each time that type of

symptom appears. For example, edges (V4581023, 4019003,

V4581024, V4581025, 53081001, V1051001) in phase 2

represent stability of the disease state in a certain period (actions

beginning V4581) with counters 023, 024, and 025 (where the

counter is initialized to 100), Indicated that the condition has

stabilized after taking urgent action by taking a specific

treatment. Their occurrence in a discriminative subgraph would

indicate that it either is or is not advisable to take this

action early.

TABLE 4

CROSS-VALIDATION TEST RESULTS OF DSM – MIMIC DATASET

Test No. Phase 1 Avg.

Error Rate

Phase 2 Avg.

Error Rate

Phase 3 Avg.

Error Rate

1 13.32% 8.60% 0.92%

2 13.54% 8.08% 1.70%

3 12.95% 9.11% 0.80%

4 14.66% 9.20% 1.96%

5 13.22% 8.35% 1.45%

6 13.62% 9.20% 2.00%

7 12.10% 8.48% 1.46%

8 13.48% 9.52% 1.73%

9 14.35% 8.33% 1.63%

10 12.45% 9.11% 1.65%

Avg. 13.37% 8.79% 1.53%

15 POLIBITS, vol. 66(1), 2024, pp. 9–17https://doi.org/10.17562/PB-66(1)-2

Graph Mining Healthcare Approach: Analysis and Recommendation
IS

S
N

 2395-8618

VI. CONCLUSION AND FUTURE WORK

The use of recommendation systems has become widespread

in our society. In general, they examine historical data and try

to predict what should be done in the future. Herein we have

applied graph data mining techniques, frequent and

discriminative subgraph mining, to healthcare system, MIMIC,

to develop a system that can provide recommendations in order

to improve a patient’s chances of recovery. We modelled each

case as a graph and found a collection of subgraphs that

specified sequences of actions that physician should, and should

not, make in each of three phases of the case. When testing

datasets of both cases “life and death”, experimental results of

discriminative subgraph mining showed that the accuracy of

our recommendations was high (an average of 93% accuracy

for all three phases), and better than when using frequent

subgraph mining.

Overall, our recommendations for our test were more

informative in terms of what a physician should do at each of

three phases in order to keep the patient a live and make him/her

recover; however, we also were able to provide some

information about what the physician should not do. Most

importantly, this study has served as a proof of concept that the

discriminative subgraph approach may be a promising strategy

for not only healthcare predictive analytics, but also for other

problem domains that involve direct and indirect resource

generation and destruction. In the future we plan to establish a

mapping between action types and assets so that a more

generalized recommendation system can be developed. We also

hope to explore ways to make the algorithms more efficient,

perhaps applying some heuristics to reduce the search space that

are inherent to the nature of healthcare data. Ultimately, we

intend to abstract this strategy to other problem domains such

as natural disasters such as earthquakes and hurricanes tracking

and prediction systems using the same foundation of analyzing

examples of survivance or not in order to make

recommendations for future positive outcomes.

ACKNOWLEDGMENT

The authors would like to thank Mustansiriyah University2

Baghdad, Iraq for its support in the present work. On the other

hand, the authors thank Al Farabi University College for its

support and our colleagues who provided insight and expertise

that greatly assisted the research, although they may not agree

with all of the interpretations/conclusions of this paper.

REFERENCES

[1] A. Abugabah, A. Ahmad, and A. Abuqabbeh, “Data Mining in Health
Care Sector: Literature Notes,” in Proceedings of the 2019 2nd

International Conference on Computational Intelligence and Intelligent

Systems, pp. 63‒68, 2019. DOI: 10.1145/3372422.3372451.

[2] K. H. Pine, C. Bossen, Y. Chen, G. Ellingsen, M. Grisot, M. Mazmanian,

and N. H. Møller, “Data work in healthcare: Challenges for patients,

clinicians, and administrators,” in Companion of the 2018 ACM
Conference on Computer Supported Cooperative Work and Social

Computing, pp. 433‒439, 2018. DOI: 10.1145/3272973.3273017.

2 https://uomustansiriyah.edu.iq

[3] W. Fei, P. Zhang, and J. Dudley, “Healthcare data mining with matrix

models,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 2137‒ 2138,

2016. DOI: 10.1145/2939672.2945387.

[4] N. V. Chawla, and D. A. Davis, “Bringing big data to personalized
healthcare: a patient-centered framework,” Journal of General Internal

Medicine, vol. 28, no. 3, pp. 660‒665, 2013. DOI: 10.1007/s11606-013-

2455- 8.

[5] R. P. Song, B. Wang, G. M. Huang, Q. D. Liu, R. J. Hu, and R. S. Zhang,

“A hybrid recommender algorithm based on an improved similarity

method,” Applied Mechanics and Materials, vol. 475, pp. 978‒982, 2014.
DOI: 10.4028/www.scientific.net/AMM.475-476.978.

[6] F. O. Isinkaye, Y. O. Folajimi, and B. A. Ojokoh, “Recommendation

systems: Principles, methods and evaluation,” Egyptian Informatics
Journal, vol. 16, no. 3, pp. 261‒273, 2015. DOI: 10.1016/j.eij.2015.

06.005.

[7] F. Folino and C. Pizzuti, “Combining Markov models and association
analysis for disease prediction,” in International Conference on

Information Technology in Bio-and Medical Informatics, Springer,

Berlin, Heidelberg, pp. 39‒52, 2011.

[8] E. Alickovic and A. Suba, “Medical decision support system for diagnosis

of heart arrhythmia using DWT and random forests classifier,” Journal of

medical systems, vol. 40, no. 4, pp. 1‒12, 2016.

[9] A. Drachen, C. Thurau, J. Togelius, G. N. Yannakakis, and C. Bauckhag,

“Game Data Mining,” Game Analytics: Maximizing the Value of Player

Data, London, UK, Springer London, pp. 205–253, 2013.

[10] J. Huan, W. Wang, J. Prins, and J. Yang, “SPIN: Mining Maximal

Frequent Subgraphs from Graph Databases,” In: Proceedings of the 10th.
ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD `04, Seattle, WA, USA, ACM, pp. 581–586, 2004.

DOI: 10.1145/1014052.1014123.

[11] X. Yan, and J. Han, “CloseGraph: Mining Closed Frequent Graph

Patterns,” in Proceedings of the 9th. ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD '03,
Washington DC., USA, ACM, pp. 286–295, 2003.

[12] J. Huan, W. Wang, and J. Prins, “Efficient Mining of Frequent Subgraphs

in the Presence of Isomorphism,” in Proceedings of the 3rd. IEEE
International Conference on Data Mining, ICDM '03, pp. 549–552, 2003.

[13] M. Kuramochi and G. Karypis, “Finding Frequent Patterns in a Large

Sparse Graph,” in Proceedings of the 2004 SIAM International
Conference on Data Mining, pp. 345–356, 2004.

[14] Z. Shao, Y. Hirayama, Y. Yamanishi, and H. Saigo, “Mining

Discriminative Patterns from Graph Data with Multiple Labels and Its
Application to Quantitative Structure-Activity (QSAR) Models,” Journal

of Chemical Information Models, vol. 55, no. 12, pp. 2519–2527, 2015.

[15] N. Jin, C. Young, and W. Wang, “Discriminative Subgraph Mining for
Protein Classification,” in Computational Knowledge Discovery for

Bioinformatics Research, pp. 279–295, 2012.

[16] H. Cheng, D. Lo, Y. Zhou, X. Wang, and X. Yan, “Identifying Bug
Signatures Using Discriminative Graph Mining,” in Proceedings of the

18th. International Symposium on Software Testing and Analysis ISSTA

'09, Chicago, IL USA, pp. 141–151, 2009.

[17] J. Leopold, N. Eloe, and P. Taylor, “BugHint: A Visual Debugger Based

on Graph Mining,” in Proceedings of the 24th International Conference

on Visualization and Visual Languages ICVVL '18, San Francisco, CA,
USA, pp. 109–118, 2018.

[18] J. Leopold, N. Eloe, J. Gould, and E. Willard, “A Visual Debugging Aid

Based on Discriminative Graph Mining,” Journal of Visual Languages
and Sentient Systems (VLSS), no. 4, pp.1–10, 2018.

[19] N. Jin and W. Wang, “LTS: Discriminative Subgraph Mining by Learning

from Search History,” in Proceedings of IEEE 27th. International
Conference on Data Engineering ICDE '11, Hannover, Germany, pp.

207–218, 2011.

[20] X. Yan, H. Cheng, J. Han, and P. Yu, “Mining Significant Graph Patterns

by Leap Search,” in Proceedings of the 2008 ACM SIGMOD

International Conference on Management of Data SIGMOD '08,
Vancouver, BC, Canada, pp. 433–444, 2008.

[21] W.-T. Chu, and M.-H. Tsai, “Visual Pattern Discovery for Architecture

Image Classification and Product Image Search,” in Proceedings of the
2nd. ACM International Conference on Multimedia Retrieval, ICMR '12,

Hong Kong, China, pp. 1–27, 2012.

16POLIBITS, vol. 66(1), 2024, pp. 9–17 https://doi.org/10.17562/PB-66(1)-2

Hiba Ghassan Fareed, Isam Abdulmunem Alobaidi, Jennifer Leopold, et al.
IS

S
N

 2395-8618

[22] X. Yan, P. S. Yu, and J. Han, “Graph Indexing: A Frequent Structure-

based Approach,” in Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data, SIGMOD '04, Paris,

France, pp. 335–346, 2004.

[23] X. Yan and J. Han, “gSpan: Graph-based Substructure Pattern Mining,”
in Proceedings of the 2002 IEEE International Conference on Data

Mining, ICDM '02, Maebashi City, Japan, pp. 721–724, 2002.

[24] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis, “GraMi:
Frequent Subgraph and Pattern Mining in a Single Large Graph,” Proc.

VLDB Endowment, vol. 7, no. 7, pp. 517–528, 2014.

[25] MIMIC Description, Medical Information Mart for Intensive Care
Description” https://www.physionet.org/content/mimiciv/2.0/ Accessed:

2023-02-07.

[26] I. Alobaidi, J. Leopold, A. Allami, N. Eloe, and D. Tanksley, “Predictive
analysis of real‐time strategy games: A graph mining approach,” Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol.
11, no. 2, e1398, 2021.

17 POLIBITS, vol. 66(1), 2024, pp. 9–17https://doi.org/10.17562/PB-66(1)-2

Graph Mining Healthcare Approach: Analysis and Recommendation
IS

S
N

 2395-8618

