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Abstract—This paper presents a reinforcement learning-based
algorithm for computing epidemic contention policies defined in
terms of mobility-restriction actions. The algorithm’s objective
is simultaneously minimizing public health and economic
affectations, which is challenging because both objectives
are in conflict. We used a SEIRD (Susceptible-Exposed-
Infected-Recovered-Deceased) epidemiological model to capture
the spreading dynamics of a disease characterized by the
probabilities of transitioning between the states defined in
the model. To train the reinforcement learning algorithm,
we implemented a discrete event simulator from scratch
that considers different mobility patterns and diseases defined
in terms of the SEIRD model probabilities. Extensive
simulation-based results show that the proposed algorithm
computes mobility restriction policies that effectively minimize
the two opposite objectives and are flexible enough to allow a
decision-maker to prioritize either public health or the economy.

Index Terms—Epidemic control, compartmental models in
epidemiology, reinforcement learning.

I. INTRODUCTION

As new infectious diseases like COVID-19 and influenza
have emerged, policies have been implemented to prevent
widespread contagion. These policies include wearing face
masks and practicing complete isolation [9]. These policies
aim to prevent large outbreaks of illness, which can negatively
impact the economy and health of an entire population [1].
The effects of such outbreaks can be felt at different levels,
from economic recessions and mass layoffs to overcrowded
hospitals and loss of lives.

While there is a well-established epidemiological
methodology that involves observation, measurement,
comparison, and proposal [6]; applying these methods is
sometimes challenging. This is because the spread or mutation
of a disease can happen so rapidly that it’s impossible to
conduct a precise analysis, and consequently, taking effective
actions becomes a difficult task. Fortunately, technological
advancements in computer science have made it possible to
simulate the behavior of populations in a short amount of
time. In the context of epidemiological diseases, this allows
us to estimate how the disease might spread, its potential
impact, and to compute preventive policies that could be
taken to minimize its effects.
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Centro de Investigación en Computación, Mexico City, Mexico
(ferrnando canto@gmail.com, ucoronab@ipn.mx, rmen@cic.ipn.mx,
ric@cic.ipn.mx).

Compartment models are the most popular mathematical
models used to simulate infectious disease behavior.
These models are typically run using ordinary differential
equations, which are deterministic, but they can also
be used with a stochastic framework to provide more
realistic results, although the analysis is much more
complicated [5]. The most well-known epidemic models
are the Susceptible-Infected–Susceptible (SIS) and
Susceptible–Infected–Recovered (SIR) models. Another
model gaining increasing interest is the Susceptible–
Exposed–Infected–Recovered–Susceptible (SEIRS) [8].
Although some models include vital dynamics, like
births and deaths under normal circumstances [2],
recent events have shown that the spread of infection
can cause many deaths to arise. A compartment model
introduced in 2020 considering this is the Susceptible–
Exposed–Infected–Recovered-Deceased (SEIRD) [7] model,
which was used along reinforcement learning techniques to
compute optimal controls for epidemic spreading.

In this article, we propose a framework using simple
population behavior simulations under two common scenarios
impacting infectious disease spreading through a SEIRD
compartment model. From this simulation-based environment,
we use reinforcement learning to compute optimized mobility
restriction policies aimed at minimizing the negative impacts
of an epidemic.

The remainder of this paper is structured as follows: Section
II includes related work about the spreading and contention
dynamics of infectious diseases. We introduce the basic
compartmental models used for modeling epidemic diseases
in Section III. The proposed framework and the experiments
are described in Section V and VI respectively. Lastly, we
include a brief discussion, our conclusions, and future work
in Section VII.

II. RELATED WORK

In 2020, following the emergence of COVID-19, there was
a proposal to explore the use of reinforcement learning for
computing policies of mobility restrictions without any prior
knowledge [7]. The initial premise was that the impact of
the pandemic could be reduced by restricting the movement
of the masses, for example, an economic crisis. To simulate
the masses’ movements, they used a 2-dimensional grid
where fixed random moves were performed daily. They used
the SEIRD model to replicate the spread of the infection.
Their action space contains three movement restrictions: 0%,
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25%, and 75%. Their states were formed by the percentage
of active cases, the percentage of newly infected cases,
the cumulative percentage of cured cases, the cumulative
percentage of deceased cases, the reproduction rate, the daily
economic contributions of the population, and the current
movement restriction level. The reward function was defined in
terms of three environmental parameters: the current economy
ratio, cumulative death ratio, and the current percentage of
active cases.

One of the study’s major limitations is that several
modeling assumptions were based on the early stages of the
COVID-19 pandemic. Additionally, the researchers employed
Deep Reinforcement Learning (DRL) techniques, but since the
states and actions were discrete, tabular techniques could have
been utilized for optimization purposes. Finally, the study is
limited to modeling COVID-19, but the framework applies to
many infectious diseases.

In 2022, a framework for controlling infectious diseases
was proposed to help make data-driven decisions and reduce
long-term costs [11]. The authors didn’t propose a population
interaction model because all information was obtained
from official sources. The framework uses a generalized
SIR model as the spreading disease model and applies a
model-based, multi-objective planning algorithm to identify
a set of Pareto-optimal policies, which cannot be improved
for one objective without sacrificing another at each decision
point. By combining this framework with prediction bands for
each policy, policymakers have a real-time decision-support
tool. The framework was applied to the spread of COVID-19
in China. The experiments conducted by the authors focused
on six regions in China. The environment state was defined
by its annual gross domestic product (GDP), population, and
the number of confirmed COVID-19 cases. The state was
defined per region. They used three levels of movement
restriction as their actions: level 1 indicated no or few official
policies, level 2 meant a public health emergency response,
and Level 3 was stringent closed-off management required by
the government. The cost function was sampled mobility ratio
for each restriction level, scaled by the daily GDP.

The framework is highly robust and can be applied to
various infectious diseases. However, since the main proposal
was for a particular case study, and the population interaction
was obtained from official sources instead of a simulation, we
do not know the decisions that could be made under certain
conditions. For instance, we do not know what decisions would
be made if the cost function included the mortality rate.

III. ANALYTICAL MODELS FOR EPIDEMIC PROCESSES

In this section, we introduce the most common compartment
models used to study the dynamics of infectious diseases. They
range from basic deterministic models expressed as ordinary
differential equations to more advanced stochastic models
defined as Markovian processes.

A. Deterministic Compartmental SIS Model

The simplest compartment model for infectious diseases is
the SIS model, first introduced by Kermack and McKendrick
[4]. The model assumes two transitions between the
compartments: infection (from S to I) and recovery (from
I to S). The infection rate is assumed to be proportional
to the sizes of the S and I compartments, while the rate
of recovery is assumed to be proportional to the size of the
infected compartment. This model is given by Eqs. 1:

dS(t)

dt
= −θI(t)S(t)

N
+ δI(t),

dI(t)

dt
= θI(t)

S(t)

N
− δI(t), (1)

where S(t) and I(t) denote the size of the susceptible and
infected compartments at time t, N = S(t) + I(t) is the
population size, and θ and δ are positive constants called
infection and recovery rates, respectively. It may be helpful
to think of θ as the rate at which infected individuals
make infection-transmitting contacts. Then, the total rate of
infectious contacts is θI , but only a fraction S/N of these are
susceptible individuals and thus lead to a new infection [5].

B. Stochastic Compartmental SIS Model

The starting point of many epidemic models is a stochastic
formulation, which involves an implicit connectivity network
[5]. For the SIS model, S(t) and I(t) = N − S(t) are
random variables taking values from the set {0, 1, · · · , N}.
Some assumptions are required:

1) the network of contacts is fully connected,
2) infection is transmitted across a link between a

susceptible and an infected individual at rate α, so αN
corresponds to θ;

3) each infected individual recovers at rate δ independently
of all others and of the network; and

4) both processes are Markovian.

Treating this process as a continuous-time Markov chain and
given the state of the system at time t, (S, I)(t), the following
two transitions are possible:

(S, I)
αSI−−→ (S − 1, I + 1),

(S, I)
δI−→ (S + 1, I − 1), (2)

where the rates encode the transmission and recovery
processes. Whether the next event is an infection or recovery
is determined at random but relative to the magnitude of the
two rates.

C. Stochastic Compartmental SEIR and SEIRS Models

The SEIR [3] model is another variation of the disease
spread model. It includes an additional exposed compartment
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between the susceptible and infected compartments. The
model is described as follows:

(S,E, I,R)
αSI−−→ (S − 1, E + 1, I, R),

(S,E, I,R)
βE−−→ (S,E − 1, I + 1, R),

(S,E, I,R)
δI−→ (S,E, I − 1, R+ 1). (3)

Here, β represents the infection latency rate. Similar to
the SIRS model, the SEIR model also includes a transition
from the recovered compartment back to the susceptible
compartment, which can be modeled as:

(S,E, I,R)
ϵR−−→ (S + 1, E, I, R− 1). (4)

D. Stochastic Compartmental SEIRD Model

The SEIRD model [7] is the latest addition to the models
used to study the spread of disease. This model includes a
new compartment, denoted by D, representing the deceased
individuals. The stochastic nature of the model can be
described using the Equation 5:

(S,E, I,R,D)
αSI−−→ (S − 1, E + 1, I, R,D),

(S,E, I,R,D)
βE−−→ (S,E − 1, I + 1, R,D),

(S,E, I,R,D)
γI−→ (S,E, I − 1, R,D + 1),

(S,E, I,R,D)
δI−→ (S,E, I − 1, R+ 1, D),

(S,E, I,R,D)
ϵR−−→ (S + 1, E, I, R− 1, D). (5)

This model assumes that each infected individual dies at a
rate γ.

IV. SIMULATION-BASED MODEL OF THE EPIDEMIC
PROCESS

In this section, we present the design of a discrete-event
simulator that models the dynamics of a population under
two mobility scenarios and its impact on the dynamics of the
spreading of an infectious disease. This model is then used
as part of the reinforcement learning framework to simulate
episodes of the epidemic process that are used to compute
optimized control policies.

A. Population Dynamics

To simulate the population behavior, we designed a virtual
environment where the population can move according to
a pair of models. The first one considers a random free
movement simulating movements in open spaces. The second
scenario includes a bottleneck to simulate the dynamics of
crowded urban areas such as a public transportation system.

In the first scenario, each individual moves horizontally and
vertically inside a grid with a random speed restricted by a
maximum value dmax. This scenario is illustrated in Fig. 1a.

In the second scenario, individuals also move horizontally
and vertically but always from their respective housing to

their workplace. The scenario includes a narrow passage
that all individuals must traverse to reach their destination.
This situation creates a bottleneck where individuals closely
interact. As in the previous scenario, the micro-movement is
random with a maximum speed. This scenario is illustrated in
Fig. 1b.

(a) Random mobility model.

(b) Bottleneck mobility model.

Fig. 1. Simulated population behaviors

The environment was modeled as a 2-dimensional grid
of size N × M and a set of P individuals with an initial
number of susceptible persons NS and an initial number of
infectious persons NI . Given a level of mobility restriction,
for example, 75% from the P initial persons, just 25% of
them are placed randomly in the grid, simulating those people
who could face infectious interactions. The people in the grid
move L times per day in the area, causing close interaction
between susceptible and infected people. A close interaction is
determined by a spread ratio r. These interactions trigger the
dynamic process of the disease, which consequently induces
health and economic effects. The same process is repeated for
T days.

B. Infectious Disease Model

To model the evolution of an infectious disease triggered by
infectious interactions, we used a SEIRD model. This model
is applied to every person in the population. The interpretation
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for any infectious disease spreading cycle under this model is
as follows:

1) Initially, the population is susceptible to catching the
virus (Susceptible state).

2) After being near an infected person, with probability
pSE , a person is exposed (Exposed state) to the virus,
meaning that one is infected but can not spread the virus
yet. The contact may have occurred or not, but with
probability pSS = 1−pSE , the person was not exposed.

3) Then, the exposed people, after a certain period,
can transmit the disease to other people (Infectious
state). Here, the probability pEE determines the virus’
incubation time.

4) Infected people can recover from the illness, meaning
they have created temporal immunity (Recovered state),
or die (Deceased state) with probabilities pIR and pID
respectively.

5) After recovering, one can be susceptible again (return
to a Susceptible state) to the virus with probability pRS ,
which means that the person’s immunity has expired.
Here, pRR determines the immunity time.

The Markov chain of this model is shown in Fig. 2. Each
person’s initial state of the Markov chain will depend on
whether it is initially susceptible or infected, as described in
Section IV-A. The only absorbing state in this model is the
Deceased state.

The interaction between the population simulator and
the infectious disease model determines the dynamics of
disease-spreading process. This interaction is described in
Algorithm 1.

V. COMPUTING MOBILITY-RESTRICTION-BASED POLICIES
FOR EPIDEMIC CONTENTION

In this section, we present the design of a discrete-event
simulator that combines a simplified SEIRD model with
the dynamics of a population composed of individuals
who interact with each other by moving in a predefined
region. Its main purpose is to provide a tractable model
that a reinforcement learning algorithm can use to compute
optimized and meaningful control policies.

A. State Space

The environment state is composed of the percent (or
equivalently, the fraction) of people in the Susceptible (S),
Infected (I), Recovered (R), and Deceased (D) compartments.
Additionally, we included the fraction of days that have passed
before completing an episode. This is, for a number of days
T and a certain amount of people P , at each time step t the
environment will have a state given by Equation 6:

st = (S/P, I/P,R/P,D/P, t/T ) ∈ S. (6)

B. Action Space

The spread of the disease can be mitigated by reducing the
population’s mobility. Hence, the agent’s actions are defined
in terms of mobility restrictions. We established five levels of
mobility restrictions: level 0, no restriction; level 1, where 25%
of the individuals are static; level 2, 50%; level 3, 75%; and
level 4, where 100% of the individuals do not move. Then, at
each time step t the agent will choose an action in the action
space given by Equation 7:

at ∈ {0, 0.25, 0.5, 0.75, 1} = A. (7)

C. Cost Function

Our proposed cost function considers a combination of
the economic and health negative impacts. The following
subsections describe how these two aspects are defined and
combined into the global cost function.

1) Economic Cost.: We consider two factors that determine
the negative economic impact of a pandemic. The first factor
is the mobility restrictions, namely, the percentage γ of
people who stay at home. The second factor is the percentage
of cumulative deaths σ because deceased people no longer
contribute to the economy. We introduce weights ρ1 and ρ2,
that define the relative importance of mobility restrictions and
cumulative deaths respectively. This way, the economic cost
can be computed by Equation 8, where ωe is a weight that
a decision maker can use to determine the importance of
the economy:

α = ωe[ρ1γ + ρ2σ]. (8)

2) Public Health Cost.: The disease directly affects the
population’s health when they are infected, causing death in
the worst case. That is why we assume an infection cost
related to the percentage of new infections per day δ and the
percentage of the cumulative number of deaths σ. Then, with
ρ3 and ρ4 as the importance factors for the infections per day
and the cumulative deaths percent, respectively, the health cost
is given by Equation 9, where ωi is a weight that a decision
maker can use to determine the importance of the infections:

β = ωi[ρ3δ + ρ4σ]. (9)

Once we have defined the economic and public health costs,
we define our cost function as a linear combination of them
(Equation 10). We can minimize this function or maximize
its negative value (reward interpretation). Situations or states
with higher economic or public health costs will be highly
discouraged by getting a significantly high cost (low reward):

R(st) = −C(st) = −(α+ β). (10)

D. Policies Computation

We use the environment described in Section IV to compute
optimized policies. We start an episode at day t = 0. This
episode has an initial state st. Using a policy π, we determine
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Fig. 2. Markov chain that models the dynamics of the disease within an individual

Fig. 3. The simulation-based epidemic model considers the interaction between individuals and their impact on the evolution of the virus spreading process

the episode action (mobility restriction) by sampling it from
the policy at ∼ π(st). During the day, people perform random
moves that generate new infections due to the close contact
between susceptible and infectious persons. After the episode
completion, we get a new state describing the environment
st+1 and determining the initial state for the next episode t+1.
Using the new state, we can calculate the reward and then use
it to improve the policy. This process is illustrated in Fig. 3
and described in Algorithm 1.

Algorithm 1 receives as input the set of probabilities
pSE , pEI , pID, pIR, pRS that define the properties of the
SEIRD model that determine the dynamics of the epidemic
process, and the set of weights ωe, ωi, ρ1, ρ2, ρ3, ρ4 that
are defined by a decision maker to prioritize the different
components of the objective function, namely, the economy
or the public health. Algorithm 1 also receives the control
policy π that is used to determine the proportion of the
population with restricted mobility (Line 4). The algorithm’s
main for-loop (Lines 8-34) performs a time step (or a day)
of the epidemic process which is composed of T days. Every
day, the system state is updated according to the interactions
of the individuals and to the values of the probabilities of the
SEIRD model. As a result, the algorithm returns a sequence of
the system state composed of the level of mobility restriction
and the cost of applying the mobility restriction for each time
step in the simulation.

For the policy improvement process, we use an every-visit
Monte-Carlo algorithm (see Algorithm 2 [10]). We started by
defining a uniform policy π by assigning the same probability
> 0 to every action in the action space A, random Q-values for
each pair (s, a) ∈ S×A and an empty list of episode’s returns
for each pair state-action. For each improvement iteration
(episode) e in a determined number of iteration E we:

1) Generate a simulation of the epidemic dynamics of T
days following the policy π (Line 5). This simulation
returns a sequence of state-action-reward s0, a0, R1, · · · ,
sT−1, aT−1, Rt.

2) By iterating backward in the sequence, we compute the
quality Q(st, at) of the taken action at in a state st. This
quality is calculated by averaging the gain obtained at
every visit to the state st and taking the action at (Lines
8-10).

3) The policy is updated at every backward iteration for the
state st, considering the quality values for every a ∈ A,
Q(st, a). The best action that can be taken a∗ is the
one with the highest quality value at the moment. The
policy is updated by increasing the probability of taking
the action a∗ in state st and reducing the other actions
probabilities (Lines 11-14).
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Algorithm 1 Episode simulation of disease spreading
dynamics.

Input Total population P , radio spread r, number of days
T , steps per day L, pSE , pEI , pID, pIR, pRS , area height N ,
area width M , ωe, ωi, ρ1, ρ2, ρ3, ρ4, maximum displacement
dmax, policy π.

Output Episode sequence
s0, a0, R0, · · · , sT−1, aT−1, RT

1: Initialize the population grid G of size N ×M
2: S ∼ U(0, 1) (Initial susceptible population fraction)
3: s0 ← (S, I = 1− S,R = 0, D = 0, t = 0)
4: a0 ∼ π(s0) (Mobility restriction under π)
5: Initialize Mi as < mathxmlns = ”http :

//www.w3.org/1998/Math/MathML”display =
”block” >< msub >< mi > M < /mi >< mi > i <
/mi >< /msub >< /math > for i = [1, · · · , P ]

6: Initialize Mi on state S for i = [1, · · · , S]
7: Initialize Mi on state I for i = [S + 1, · · · , P ]
8: for t in [0, 1, · · · , T ] do
9: Sr, Er, Ir, Rr,← S ·at, E ·at, I ·at, R ·at (Restricted

fraction per compartment)
10: NS ← (S − Sr) · P (Susceptible people)
11: NI ← (I − Ir) · P (Infectious people)
12: MS ←MS ⊆ {Mi|Mi is on state S}, |MS | = NS

13: Pi ← (Xi, Yi) for i = [1, · · · , NS + NI ], Xi ∼
U(0,M), and Yi ∼ U(0, N)

14: δ0 ← 0 (Infections counter)
15: for l in [1, · · · , L] do
16: Pi ← Pi+(Xi, Yi) for i = [0, · · · , NS +NI ], and

Xi, Yi ∼ U(−dmax, dmax)
17: A ← [dist(Pi, Pj)]ij for i = [1, · · · , NS ], j =

[NS + 1, · · · , NS +NI ]
18: for Aij < d do
19: if MS,i is on state S then
20: Trigger MS,i one step
21: if MS,i is on state E then
22: δ0 ← δ0 + 1
23: end if
24: end if
25: end for
26: end for
27: Trigger each Mi ∈ {Mi|Mi is not on state S}
28: γ ← Sr + Er + Ir +Rr

29: σ ← 100 ·D
30: δ ← δ0/P · 100
31: Ct+1 ← ωe[ρ1γ + ρ2σ] + ωi[ρ3δ + ρ4σ]
32: st+1 ← [S, I,R,D, (t+ 1)/T ]
33: at+1 ∼ π(st+1)
34: end for
35: return s0, a0,−C1, · · · , st−1, at−1,−CT

Following the previous steps, we get an optimized policy
π∗ at the end of the improvement iterations. The Algorithm 2
describes this policy improvement process.

Algorithm 2 Monte Carlo-based reinforcement learning
algorithm.

Input Training episodes E, days per episode T, states
space S, actions space A

Output Optimized policy π∗

1: π(a|s)← 1/|A| for a ∈ A, s ∈ S (Random policy)
2: Q(s, a)← U(−∞,∞) for a ∈ A, s ∈ S (Q function)
3: R(s, a)← {} for a ∈ A, s ∈ S (Set of returns)
4: for e = [1, · · · , E] do
5: Generate an episode following π:

s0, a0, R1, · · · , sT−1, aT−1, RT (Algorithm 1)
6: G← 0
7: for t = [T − 1, · · · , 0] do
8: G← G+Rt+1

9: R(st, at)← R(st, at) ∪ {G}
10: Q(st, at)← 1/|R(st, at)|

∑
r∈R(st,at)

r
11: a∗ ← argmaxaQ(st, a)
12: for a ∈ A do
13:

π(a|st)←

{
1− ϵ+ ϵ/|A| if a = a∗

ϵ/|A| if a ̸= a∗

14: end for
15: end for
16: end for
17: return π

VI. EXPERIMENTAL RESULTS

In this section, we present the results of a series of
experiments where we evaluate the performance of the
contention control policies computed by the reinforcement
learning algorithms. We consider different values of the
transition probabilities defined in the SEIRD model that define
the particular properties of the virus causing the epidemic. We
also consider different values of weights that assign priorities
to the two components of the reward function, namely, the
economic and public health. We compare the performance
of the optimized agents against the case where no mobility
restriction policies are implemented.

A. Experimental Settings

The system is initialized with S = 99% of susceptible
people and I = 1% of infected people. The virus spread
radius is set to r = 1 (meter), considering the healthy distance
proposed by the Mexican government during the COVID-19
pandemic. The random daily movements are L = 1000, and
we are studying the epidemic process for T = 30 days. The
weight of restricting mobility and cumulative deaths in the
economic cost are set to ρ1 = 0.25 and ρ2 = 0.75. The weight
of daily infections and cumulative deaths in the public health
cost are set to ρ3 = 0.25 and ρ4 = 0.75. The values of the
probabilities of the Markov chain of the SEIRD model are set
to pEI = 0.25, pIR = 0.20, pID = 0.05, pRS = 0.10 with the
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(a)

(b)

(c)

(d)

Fig. 4. Percentage of deaths and reward function when the population moves
according to a random mobility model(4a,4b), bottleneck mobility model
(4c,4d) and ωe = 30 to give priority to the public health over the economy

(a)

(b)

(c)

(d)

Fig. 5. Percentage of deaths and reward function when the population moves
according to a random mobility model (5a,5b), bottleneck mobility model
(5c,5d) and ωe = 60 for a balanced impact of economy and health
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(a)

(b)

(c)

(d)

Fig. 6. Percentage of deaths and reward function when the population moves
according to a random mobility model (6a,6b), bottleneck mobility model
(6c,6d) and ωe = 90 to give priority to the economy over the public health

(a)

(b)

Fig. 7. Mobility restrictions for the random mobility model (7a) and the
bottleneck mobility model (7b) under different values of ωe

exception of pSE which is increased to evaluate the impact of
having different types of viruses. The weight that determines
the infection impact is also fixed to ωi = 70 and we evaluate
different values for the weight ωe of the economic impact.
Results are the average of 100 simulations.

In all the scenarios, we consider a population density similar
to that of Mexico City, namely, we have P = 300 persons
moving inside a simulation area of 216× 216 meters.

B. Exploration Scenarios

To evaluate the impact of adopting optimized policies under
different disease contagion dynamics, we considered a set of
different transmission probabilities:

pSE ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}

Additionally, we considered three different situations for
economic impact; when ωe = 30, considering the health
impact more important than the economic one, when ωe = 60
meaning both impacts are balanced, and ωe = 90 indicating
that the economic impact is more relevant.

Fig. 4 shows the average percentage of deaths and the
average value of the reward function (Equation 10) when
the population moves according to random and bottleneck
mobility models and ωe = 30 for each value of pSE for 100
simulations.
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In both mobility scenarios, the behavior is similar.
Compared with a fixed policy of no restrictions, when the
optimized policies control the mobility restrictions, the number
of deaths is lower, and the reward is higher. As expected, the
bottleneck mobility induces more infections and consequently,
deaths. An additional observation is that in the bottleneck
mobility model the probability of being exposed pSE looks
to be insignificant, meaning that due to these bottlenecks,
infectious interactions will occur in the whole population.

Fig. 5 shows the average percentage of deaths and the
average value of the reward function, for 100 simulations,
when the population moves according to random and
bottleneck mobility models and ωe = 60 for each pSE . In
this case, we observe the same phenomenon as in Fig. 4.
Nevertheless, the reward values are lower than in the case of
ωe = 30. As the economic importance is higher, the mobility
restrictions are lower, indirectly causing more deaths and,
consequently, lower rewards.

In the last scenario, we set ωe = 90 to give higher priority
to the economy. The results are shown in Fig. 6. Comparing
these results with that of ωe = 60, the number of deaths did not
increase drastically, but the cost did. Despite the importance
given to the economy, having soft restrictions will indirectly
cause more deaths, which will also affect the economy. Then,
it is preferable to keep more stringent mobility restrictions
even in a situation where the economy is more important than
public health.

Lastly, Fig. 7 shows the restrictions applied by the
reinforcement learning algorithm for all the scenarios. These
results confirm two of the previous observations: when the
population moves along a bottleneck space, pSE becomes less
relevant, and after passing a threshold, even when the economy
is prioritized by making the value of ωe large, implementing
stringent mobility restrictions is the best course of action.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we presented a simulation-based model of the
spreading dynamics of an airborne virus that is characterized
by a set of probabilities that determine how the corresponding
disease evolves within the individuals. The simulation model
incorporates different mobility models that govern the way
people interact with each other.

From the simulation-based model, we trained a
reinforcement learning agent to learn the mobility restriction
policies that simultaneously minimize the negative impacts of
the epidemic on public health and the economy. Our results
revealed that the policies derived by our agent effectively
reduce these negative impacts and that can be fine-tuned to
prioritize either protecting the economy or the public health.

Future work includes scaling up the simulation experiments,
incorporating more realistic mobility models, and more
detailed characterization of the individuals, for instance, to
consider relevant attributes such as age, comorbidities, and
the use of facemasks. There is also room to investigate
using different reinforcement learning algorithms and new

formulations of the related multi-objective optimization
problem.
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